3 resultados para DENSITY ANALYSIS
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This study evaluated the use of electromagnetic gauges to determine the adjusted densities of HMA pavements. Field measurements were taken with two electromagnetic gauges, the Pavement Quality Indicator (PQI) 301 and the Pavetracker Plus 2701B. Seven projects were included in the study with 3 to 5 consecutive paving days. For each day/lot 20 randomly selected locations were tested along with seven core locations. The analysis of PaveTracker and PQI density consisted of determining which factors are statistically significant, and core density residuals and a regression analysis of core as a function of PaveTracker and PQI readings. The following key conclusions can be stated: 1. Core density, traffic and binder content were all found to be significant for both electromagnetic gauges studied, 2. Core density residuals are normally distributed and centered at zero for both electromagnetic gauges, 3. For PaveTracker readings, statistically one third of the lots do not have an intercept that is zero and two thirds of the lots do not rule out a scaler correction factor of zero, 4. For PQI readings, statistically the 95% confidence interval rules out the intercept being zero for all seven projects and six of the seven projects do not rule out the scaler correction factor being zero, 5. The PQI 301 gauge should not be used for quality control or quality assurance, and 6. The Pavetracker 2701B gauge can be used for quality control but not quality assurance. This study has found that with the limited sample size, the adjusted density equations for both electromagnetic gauges were determined to be inadequate. The PaveTracker Plus 2701B was determined to be better than the PQI 301. The PaveTracker 2701B could still be applicable for quality assurance if the number of core locations per day is reduced and supplemented with additional PaveTracker 2701B readings. Further research should be done to determine the minimum number of core locations to calibrate the gauges each day/lot and the number of additional PaveTracker 2701B readings required.
Resumo:
Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa’s extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described.
Resumo:
The Center for Transportation Research and Education (CTRE) issued a report in July 2003, based on a sample study of the application of remote sensed image land use change detection to the methodology of traffic monitoring in Blackhawk County, Iowa. In summary, the results indicated a strong correlation and a statistically significant regression coefficient between the identification of built-up land use change areas from remote sensed data and corresponding changes in traffic patterns, expressed as vehicle miles traveled (VMT). Based on these results, the Iowa Department of Transportation (Iowa DOT) requested that CTRE expand the study area to five counties in the southwest quadrant of the state. These counties are scheduled for traffic counts in 2004, and the Iowa DOT desired the data to 1) evaluate the current methodology used to place the devices; 2) potentially influence the placement of traffic counting devices in areas of high built-up land use change; and 3) determine if opportunities exist to reduce the frequency and/or density of monitoring activity in lower trafficked rural areas of the state. This project is focused on the practical application of built-up land use change data for placement of traffic count data recording devices in five southwest Iowa counties.