10 resultados para DEBRIS
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This document is intended to lay the foundation for resource reduction strategies in new construction, renovation and demolition. If you have an innovative idea or information that you believe should be included in future updates of this manual please email Shelly Codner at scodner@region12cog.org or Jan Loyson at Jan.Loyson@Iowalifechanging.com. Throughout this manual, we use the term “waste reduction” to define waste management initiatives that will result in less waste going to the landfill. In accordance with the waste management hierarchy these practices include reducing (waste prevention), reusing (deconstruction and salvage), recycling and renewing (making old things new again) - in that order. This manual will explain what these practices are and how to incorporate them into your projects.
Resumo:
Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can adversely affect the operation of the waterway opening or cause failure of the structure. In addition, removal of debris accumulation is difficult, time consuming, and expensive for maintenance programs. This research involves a literature search of publications, products, and pier design recommendations that provide a cost effective method to mitigate debris accumulation at bridges. In addition, a nationwide survey was conducted to determine the state-of-the-practice and the results are presented within.
Resumo:
This report is a well illustrated and practical Guide intended to aid engineers and engineering technicians in monitoring, maintaining, and protecting bridge waterways so as to mitigate or prevent scour from adversely affecting the structural performance of bridge abutments, piers, and approach road embankments. Described and illustrated here are the scour processes affecting the stability of these components of bridge waterways. Also described and illustrated are methods for monitoring waterways, and the various methods for repairing scour damage and protecting bridge waterways against scour. The Guide focuses on smaller bridges, especially those in Iowa. Scour processes at small bridges are complicated by the close proximity of abutments, piers, and waterway banks, such that scour processes interact in ways difficult to predict and for which reliable design relationships do not exist. Additionally, blockage by woody debris or by ice, along with changes in approach channel alignment, can have greater effects on pier and abutment scour for smaller bridges. These considerations tend to cause greater reliance on monitoring for smaller bridges. The Guide is intended to augment and support, as a source of information, existing procedures for monitoring bridge waterways. It also may prompt some adjustments of existing forms and reports used for bridge monitoring. In accord with increasing emphasis on effective management of public facilities like bridges, the Guide ventures to include an example report format for quantitative risk assessment applied to bridge waterways. Quantitative risk assessment is useful when many bridges have to be evaluated for scour risk and damage, and priorities need to be determined for repair and protection work. Such risk assessment aids comparison of bridges at risk. It is expected that bridge inspectors will implement the Guide as a concise, handy reference available back at the office. The Guide also likely may be implemented as an educational primer for new inspectors who have yet to become acquainted with waterway scour. Additionally, the Guide may be implemented as a part of process to check whether existing bridge-inspection forms or reports adequately encompass bridge-waterway scour.
Resumo:
A pilot study was conducted on the premature failures of neoprene strip seals in expansion joints in Iowa bridges. In a relatively large number of bridges, strip seals have pulled out of the steel extrusions or otherwise failed well before the expected life span of the seal. The most serious consequence of a strip-seal failure is damage to the bridge substructure due to salt, water, and debris interacting with the substructure. A literature review was performed. Manufacturers’ specifications and recommendations, practices in the states bordering Iowa, and Iowa DOT design and installation guidelines were reviewed. Discussions were held with bridge contractors and the installation of a strip seal system was observed. Iowa DOT bridge databases were analyzed. A national survey was conducted on the use and performance of strip seals. With guidance from the Iowa DOT, twelve in-service bridges with strip-seal expansion joints were selected for detailed investigation. Effective bridge temperatures and corresponding expansion-joint openings were measured, DOT inspection reports were reviewed, and likely cause(s) of premature failures of strip seals were proposed. All of the seals used in the twelve bridges that had the most serious failures were in concrete girder bridges. Experimental results show that for a majority of these serious failures, the joint opening at 0° F predicted by the Iowa DOT design equations, the joint opening at 0° F extrapolated from the experimental data, or both, are larger than the movement rating of the strip seal specified on the bridge plans. Other likely causes of premature failures of seals in the twelve bridges include debris and ice in the seal cavity, a large skew and the corresponding decrease in the movement rating of the seal, improper installation, and improper setting of the initial gap.
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.
Resumo:
Stage-discharge relations constitute a viable, alternative technique for estimating accurately flow for ungaged sites. In this research, we have utilized pressure transducers and Large Scale Particle Image Velocimetry techniques to develop stage-discharge relations at eleven sites in the Hungry Canyon Area (HCA) of southwestern Iowa under different hydrologic conditions. We have employed these data to calibrate and verify an established hydrologic model and then we have used this model to provide a stage discharge relation for different hydrologic conditions (i.e. rating curves). The benefits of the project are numerous including that the discharge data will be used for a number of purposes, including operational decision making in the HCA about the design of water-control and conveyance structures, input for hydraulic and hydrologic models, and calculation of sediment and other water quality constituents transport and “loads”, and for decision making. This project has also pointed out the difficulties in measuring flows in ungaged streams with ice jams, steep banks, erodible beds, and floating debris.
Resumo:
A water quality resource concern has come to the forefront in the Upper Miller Creek watershed in Black Hawk County after five to seven inches of rain fell on the area on May 22nd and 23rd of 2004 and unprecedented amounts of soil and organic debris were washed from cultivated areas, clogging most culverts and roadside ditches. The quantity of soil deposited in ditches gave a good indication of the amounts that were transported into the stream. The estimated total cost to Black Hawk County for cleanup and repair within the road right-of-way was $345,000. There were undetermined environmental costs incurred when the incredibly high volumes of soil washed from the fields into Miller Creek which flows directly into the Cedar River that is identified by the Department of Natural Resources as an impaired water body. The Upper Miller Creek Watershed Project is an innovative, collaborative project intended to meet a specific need identified by a local steering committee made up of concerned community agencies and local landowners. Led by the Soil and Water Conservation District and the Black Hawk County Board of Supervisors, the Miller Creek Watershed Project seeks to reduce soil erosion, improve water quality, and reduce county road infrastructure cost by implementing conservation practices, reducing nutrient and pesticide use and improving wildlife habitat.
Resumo:
The City of Marquette lies in the 65,000 acre Mississippi River watershed, and is surrounded by steep bluffs. Though scenic, controlling water runoff during storm events presents significant challenges. Flash-flooding from the local watershed has plagued the city for decades. The people of Marquette have committed to preserve the water quality of key natural resources in the area including the Bloody Run Creek and associated wetlands by undertaking projects to control the spread of debris and sediment caused by excess runoff during area storm events. Following a July 2007 storm (over 8” of rain in 24 hours) which caused unprecedented flood damage, the City retained an engineering firm to study the area and provide recommendations to eliminate or greatly reduce uncontrolled runoff into the Bloody Run Creek wetland, infrastructure damage and personal property loss. Marquette has received Iowa Great Places designation, and has demonstrated its commitment to wetland preservation with the construction of Phase I of this water quality project. The Bench Area Storm Water Management Plan prepared by the City in 2008 made a number of recommendations to mitigate flash flooding by improving storm water conveyance paths, detention, and infrastructure within the Bench area. Due to steep slopes and rocky geography, infiltration based systems, though desirable, would not be an option over surface based systems. Runoff from the 240 acre watershed comes primarily from large, steep drainage areas to the south and west, flowing to the Bench area down three hillside routes; designated as South East, South Central and South West. Completion of Phase I, which included an increased storage capacity of the upper pond, addressed the South East and South Central areas. The increased upper pond capacity will now allow Phase II to proceed. Phase II will address runoff from the South West drainage area; which engineers have estimated to produce as much water volume as the South Central and South East areas combined. Total costs for Phase I are $1.45 million, of which Marquette has invested $775,000, and IJOBS funding contributed $677,000. Phase II costs are estimated at $617,000. WIRB funding support of $200,000 would expedite project completion, lessen the long term debt impact to the community and aid in the preservation of the Bloody Run Creek and adjoining wetlands more quickly than Marquette could accomplish on its own.
Resumo:
Bridge expansion joints, if not properly designed, constructed, and maintained, often lead to the deterioration of critical substructure elements. Strip seal expansion joints consisting of a steel extrusion and neoprene gland are one type of expansion joint and are commonly used by the Iowa Department of Transportation (DOT). Strip seal expansion joints are susceptible to tears and pull outs that allow water, chlorides, and debris to infiltrate the joint, and subsequently the bearings below. One area of the strip seal that is particularly problematic is where it terminates at the interface between the deck and the barrier rail. The Iowa DOT has noted that the initial construction quality of the current strip seal termination detail is not satisfactory, nor ideal, and a need exists for re-evaluation and possibly re-design of this detail. Desirable qualities of a strip seal termination detail provide a seal that is simple and fast to construct, facilitate quick gland removal and installation, and provide a reliable, durable barrier to prevent chloride-contaminated water from reaching the substructure. To meet the objectives of this research project, several strip seal termination details were evaluated in the laboratory. Alternate termination details may not only function better than the current Iowa DOT standard, but are also less complicated to construct, facilitating better quality control. However, uncertainties still exist regarding the long-term effects of using straight-through details, with or without the dogleg, that could not be answered in the laboratory in the short time frame of the research project.