4 resultados para Cut-off operation
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Grass and weeds are a problem because they grow faster and are often taller than young seedlings. They compete with your seedlings for the limited moisture, nutrients, light, and space. Grasses and broadleaf weeds may kill your seedlings. At the very least, they keep seedlings from growing as quickly and vigorously as they would without competition. In addition, a thick stand of grass or weeds next to your seedlings provides habitat for rabbits and rodents who can girdle or cut off your seedlings. The only way to avoid these problems are to control the grass and weeds that cause them.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.
Resumo:
In July of 2009, the Division of Criminal and Juvenile Justice Planning (CJJP) received Byrne Justice Assistance Grant/American Recovery and Reinvestment Act funding from the Governor’s Office of Drug Control Policy to conduct a process and outcome evaluation of the STAR (Sisters Together Achieving Recovery) program housed at the Iowa Correctional Institution for Women (ICIW) in Mitchellville, Iowa. The STAR Program is a licensed inpatient substance abuse treatment program that utilizes a Therapeutic Community model (TC). All offenders exiting the STAR program between October 1, 2004 and June 30, 2008 were included in the study (n=173). A comparison sample was drawn of offenders exiting the ICIW during the same release time frame with identified but untreated substance abuse needs (n= 173). March 31, 2010 was designated as the cut-off date for the study. This yielded an average post-program follow-up time of 3.1 years. The STAR group was further divided into two groups by time of program exit. Participants exiting the program between October 1, 2004 and June 30, 2006 were designated as STAR 1 (n=78) and those exiting the program between July 1, 2006 and June 30, 2008 were designated as STAR 2 (n=95). In order to have comparable tracking time between STAR groups, tracking time for STAR 1 concluded July 31, 2008. This yielded an average post release follow-up time of 2.4 years for both groups. Demographic, Program, Intervention, and Outcome data were examined. Comparisons were made between groups as well as categories of participation.
Resumo:
Class A, B, and C concrete paving mixes were tested for compressive strength at 40°F and 73°F, both with and without fly ash substitution for 15% of the portland cement. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. The purpose of the study was to provide data on cool weather strength development of concrete paving mixes utilizing Iowa materials. In all cases except one, the fly ash concretes exhibited lower 7 and 28- day compressive strengths at 40°F than control mixes. The continuation of the October 15 cut-off date for the use of fly ash concrete is recommended.