10 resultados para Current Control
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.
Resumo:
The air void analyzer (AVA) with its independent isolation base can be used to accurately evaluate the air void system—including volume of entrained air, size of air voids, and distribution of air voids—of fresh portland cement concrete (PCC) on the jobsite. With this information, quality control adjustments in concrete batching can be made in real time to improve the air void system and thus increase freeze-thaw durability. This technology offers many advantages over current practices for evaluating air in concrete.
Resumo:
The purpose of this Iowa manual is to serve as a guide, provide solutions, and offer suggestions on construction sites to comply with Iowa's current soil erosion and storm water runoff regulations. This need is particularly important when land undergoes a land use change. Information provided in this manual will be helpful to land owners, developers, consultants, contractors, planners, local government, as well as the general public. This manual is intended to provide techniques that will meet the mandates of current legislation. Innovations that will benefit the user and still provide effective control are encouraged.
Resumo:
Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.
Resumo:
The current shortage of highway funds precludes the immediate replacement of most of the bridges that have been evaluated as structurally deficient or functionally obsolete or both. A low water stream crossing (LWSC) affords an economical alternative to the replacement of a bridge with another bridge in many instances. However, the potential liability that might be incurred from the use of LWSCs has served as a deterrent to their use. Nor have guidelines for traffic control devices been developed for specific application to LWSCs. This research addressed the problems of liability and traffic control associated with the use of LWSCs. Input to the findings from this research was provided by several persons contacted by telephone plus 189 persons who responded to a questionnaire concerning their experience with LWSCs. It was concluded from this research that a significant potential for accidents and liability claims could result from the use of LWSCs. However, it was also concluded that this liability could be reduced to within acceptable limits if adequate warning of the presence of an LWSC were afforded to road users. The potential for accidents and liability could further be reduced if vehicular passage over an LWSC were precluded during periods when the road was flooded. Under these conditions, it is believed, the potential for liability from the use of an LWSC on an unpaved, rural road would be even less than that resulting from the continuing use of an inadequate bridge. The signs recommended for use in advance of an LWSC include two warning signs and one regulatory sign with legends as follows: FLOOD AREA AHEAD, IMPASSABLE DURING HIGH WATER, DO NOT ENTER WHEN FLOODED. Use of the regulatory sign would require an appropriate resolution by the Board of Supervisors having responsibility for a county road. Other recommendations include the optional use of either a supple mental distance advisory plate or an advisory speed plate, or both, under circumstances where these may be needed. It was also recommended HR-218 Liability & Traffic Control Considerations for Low Water Stream Crossings that LWSCs be used only on unpaved roads and that they not be used in locations where flooding of an LWSC would deprive dwelling places of emergency ground access.
Resumo:
This report describes a new approach to the problem of scheduling highway construction type projects. The technique can accurately model linear activities and identify the controlling activity path on a linear schedule. Current scheduling practices are unable to accomplish these two tasks with any accuracy for linear activities, leaving planners and manager suspicious of the information they provide. Basic linear scheduling is not a new technique, and many attempts have been made to apply it to various types of work in the past. However, the technique has never been widely used because of the lack of an analytical approach to activity relationships and development of an analytical approach to determining controlling activities. The Linear Scheduling Model (LSM) developed in this report, completes the linear scheduling technique by adding to linear scheduling all of the analytical capabilities, including computer applications, present in CPM scheduling today. The LSM has tremendous potential, and will likely have a significant impact on the way linear construction is scheduled in the future.
Resumo:
The routine maintenance along Iowa's highways and roadways during the summer growing season is a time consuming and costly endeavor. Trimming around guardrail posts and delineator posts is especially costly due to the handwork required. Trimming costs account for approximately 50% of the shoulder mowing costs according to expense figures obtained from the Iowa Department of Transportation (DOT), Office of Maintenance. The FY 2001 statewide trimming costs for the Iowa DOT was approximately $430,000 ($305,000 labor, $125,000 equipment and materials). This product would be required to perform well for 9-21 years, on average, in order to recoup the cost of installation. This includes the durability of the product, but not the cost of repair due to traffic damage, snowplow and wing damage, or damage caused by mowing operations. Maintenance costs associated with vegetation creep over the mats and repair costs would extend the required service life. As a result of resource realignment, the Iowa DOT roadside maintenance policy, for FY 2003 and the future, will be to eliminate trimming around delineator posts unless the reflector is obstructed. This policy change will effectively eliminate the need for weed control mats due to the significant reduction in trimming. The use of the weed control mats could be justified in areas that are dangerous to maintenance workers such as guardrail installations in high traffic areas. Because the delineator posts are further from the edge of the traveled roadway, there is a reduced risk to the maintenance workforce while hand trimming. Because the DuroTrim Vegetation Control Mats appear to have performed adequately in the field trial, they could be considered for use, where safety conditions warrant. That use should be limited, however, due to the considerable initial cost and changes in Iowa DOT roadside maintenance policy. Application should be limited to instances where the use of the DuroTrim Vegetation Control Mats would have a significant impact on the safety of the roadside maintenance workers. The cost savings, due to the elimination of the trimming and mowing alone, is not enough to justify their use in most situations at their current cost. The test sections will continue to be monitored periodically so that approximate service life can be determined.
Resumo:
The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. As a result, there has been a progressive move among state Departments of Transportation (DOTs) toward an increased use of the LRFD in geotechnical design practices. For the above reasons, the Iowa Highway Research Board (IHRB) sponsored three research projects: TR-573, TR-583 and TR-584. The research information is summarized in the project web site (http://srg.cce.iastate.edu/lrfd/). Two reports of total four volumes have been published. Report volume I by Roling et al. (2010) described the development of a user-friendly and electronic database (PILOT). Report volume II by Ng et al. (2011) summarized the 10 full-scale field tests conducted throughout Iowa and data analyses. This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The following notable benefits to the bridge foundation design were attained in this project: 1) comprehensive design tables and charts were developed to facilitate the implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations; 2) the results showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations; and 3) contribution to the existing knowledge, thereby advancing the foundation design and construction practices in Iowa and the nation.
Resumo:
Pavement and shoulder edge drop-offs commonly occur in work zones as the result of overlays, pavement replacement, or shoulder construction. The depth of these elevation differentials can vary from approximately one inch when a flexible pavement overlay is applied to several feet where major reconstruction is undertaken. The potential hazards associated with pavement edge differentials depend on several factors including depth of the drop-off, shape of the pavement edge, distance from traveled way, vehicle speed, traffic mix, volume, and other factors. This research was undertaken to review current practices in other states for temporary traffic control strategies addressing lane edge differentials and to analyze crash data and resultant litigation related to edge drop-offs. An objective was to identify cost-effective practices that would minimize the potential for and impacts of edge drop crashes in work zones. Considerable variation in addressing temporary traffic control in work zones with edge drop-off exposure was found among the states surveyed. Crashes related to pavement edge drop-offs in work zones do not commonly occur in the state of Iowa, but some have resulted in significant tort claims and settlements. The use of benefit/cost analysis may provide guidance in selection of an appropriate mitigation and protection of edge drop-off conditions. Development and adoption of guidelines for design of appropriate traffic control for work zones that include edge drop-off exposure, particularly identifying effective use of temporary barrier rail, may be beneficial in Iowa.
Resumo:
A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.