2 resultados para Critical Areas Program (Maine)
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment.
Resumo:
This document describes planned investments in Iowa’s multimodal transportation system including aviation, transit, railroads, trails, and highways. This five-year program documents $3.5 billion of highway and bridge construction projects on the primary road system using federal and state funding. Of that funding, a little over $500 million is available due to the passage of Senate File 257 in February 2015. As required by Senate File 257, this program includes a list of the critical highway and bridge projects funded with the additional revenue. Since last year’s program, a new federal surface transportation authorization bill was passed and signed into law. This authorization bill is titled Fixing America’s Surface Transportation (FAST) Act. The FAST Act, for the first time in many years, provides federal funding certainty over most of the time covered by this Program. In addition, it provided additional federal funding for highway and bridge projects.