11 resultados para Conventional water treatment

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Water Treatment Systems: Check Them Out Before You Buy!

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disposal of lime sludge remains a major challenge to cities in the Midwest. Disposal of lime sludge from water softening adds about 7-10% to the cost of water treatment. Having effective and safe options is essential for future compliance with the regulations of the State of Iowa and within budget restrictions. Dewatering and drying are essential to all reuse applications as this affects transportation costs and utility. Feasibility tests were conducted on some promising applications like SOx control in power generation facilities that burn coal, replacement of limestone as an ingredient in portland cement production, dust control on gravel roads, neutralization of industrial wastewater pH, and combination with fly ash or cement in construction fill applications. A detailed report and analysis of the construction fills application is presented in the second half of the report. A brief discussion of the results directly follows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems. Supplement Information to the August 2008

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report is presented in two parts . P a r t I takes a new look at the design of rest area stabilization ponds after nearly 10 years' experience with some of the existing ponds and in the light of new design standards issued by Iowa DEQ. The Iowa DOT is embarking on improvements t o the ponds a t some of the r e s t areas. These improvements may include installation of drainage tile around the ponds to lower the water table below the pond bottom, sealing of the ponds with bentonite clay to reduce the infiltration to limits recently established by Iowa DEQ, and the enlargement of the ponds installation of aeration equipment t o increase the pond capacity. As the Iowa DOT embarks on this improvement program, it behooves them t o make only the improvements that are absolutely necessary to achieve waste water treatment goals. These ponds are subject to an extremely seasonal load and thus the ordinary standards used for pond design are not appropriate. Thus, Part I of the report presents a rationale for design and operation of the ponds which is deemed appropriate for t h e i r unique seasonally loaded character. Part I1 of the report looks a t the feasibility of using wind power for the aeration of the ponds, if and when aeration is deemed necessary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Twelve-Mile Lake is an 800-acre man-made lake in central Union County. The watershed has 13,964 land acres that are used by farmers for row crops and pasture. This lake is used as a water supply source for the City of Creston and the Southern Iowa Rural Water Association. In total approximately 40,000 people are affected by this project. Developed over 20 years ago, the lake and fishery was renovated and restocked and much of the shoreline was riprapped about six years ago. During its history, extensive watershed efforts have been ongoing. However, as farmland for cropland has become more valuable and demand has increased, hilly land once used for dairy farming, grazing, and CRP has been put into row crop production. Consequently, sediment loss has become an increasing issue for farmers, conservation professionals, and the Creston Waterworks Department, which owns the water treatment facility at the lake. In 2011, the Creston Water Board received a WIRB grant to implement a sedimentation structure at the north end of the main channel flowing into the lake. The WIRB funds were used for land acquisition, with the IDNR actually constructing the facility. This report depicts work performed as part of the WIRB project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little River Lake watershed is a 13,305 acre subwatershed of Little River. The 788 acre lake was listed as a 303d impaired water body in 2008 due to elevated turbidity and algae levels. The Decatur SWCD has prioritized water quality protection efforts within the Little River Lake watershed because 1) portions of this watershed has been identified as the primary contributor of sediment and nutrients to Little River Lake, which provides an essential source of drinking water for Decatur County and the Southern Iowa Rural Water Association; 2) the watershed provides exemplary education and project interpretation opportunities due to its proximity to Little River Lake Recreation Area, and 3) by using targeted and proven soil conservation practices to address water quality deficiencies the probability of successfully attenuating soil erosion and ameliorating water quality impairments is enhanced. The specific goals of this proposal are to: 1. reduce annual sediment, and phosphorous delivery to the lake by 11,280 tons and 14,664 lbs., respectively, via applications of conservation practices on targeted agricultural land; 2. delist the lake as an EPA 303d impaired water body via water quality enhancement; 3. obtain a “Full Support” status for the lake’s aquatic life and recreational use; 4. reduce potable water treatment costs (minimum 50% cost reduction) associated with high suspended solid levels; and 5. restore a viable sport-fish population, thereby bolstering tourism and the economy. To achieve timely project implementation the Decatur SWCD has cooperated with the IDNR Watershed Improvement Section, Fisheries Bureau, and IDALS-DSC to assess extant water quality and watershed conditions, coalesced a diverse team of committed partners and secured matching funding from multiple sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the Saylor Creek Watershed Improvement Project, Iowa Heartland RC&D and other area stakeholders have an opportunity to display how "best management practices" (BMPs) can reduce storm water runoff and improve the quality of that runoff in an urban setting. Conservation design is a uew approach to storm water management that addresses the negative impacts of storm water runoff and turns them into a positive. The master plan for the Prairie Trail development surrounding the watershed project will incorporate bioretention cells, bioswales, buffer strips, rain gardens, as well as native plant landscaping to slow storm water runoff and naturally clean sediment out of the water before it reaches Saylor Creek. In addition to conservation design elements, the project will utilize storm water detention ponds and creek bed restoration to develop a complete storm water "treatment train" system within Prairie Trail. The extensive use of conservation storm water management for Prairie Trail is unique for urban development in Iowa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Twelve Mile Creek Lake is a 660 acre, Significant Publicly Owned Lake with a watershed of 14,820 acres for a ratio of 21:3. The watershed is predominately privately owned agricultural land that originates in Adair County and drains into the lake which serves as the primary source water for the City of Creston, Union County and the seven counties served by the Southern Iowa Rural Water Association. In recent years, frequent algae blooms and recurrent spikes in suspended solid concentrations have been inflating water treatment expenses for the Creston Municipal Utilities (CMU). Declining trends in water quality spurred CMU to enlist the Union Soil and Water Conservation District (SWCD) to assist in evaluating watershed conditions for potential upland improvements. Significant gully erosion issues that had been previously underestimated were discovered during this watershed assessment process. Newly acquired LiDAR elevation data readily revealed this concern which was previously obscured from view by the dense tree canopy. A Watershed Development and Planning Assistance Grant Application was approved and funded by the Iowa Department of Ag and Land Stewardship- Division of Soil Conservation. Throughout the planning process, project partners innovatively evaluated and prioritized a number of resource concerns throughout the watershed. The implementation plan presented will thwart these threats which left unaided will continue to diminish the overall health of the system, reduce the appeal of the lake to recreational users, and contribute to higher water treatment costs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (Bentonite) as a dust palliative for limestone surfaced secondary roads. It was postulated that the electrically charged surfaces (negative) of the clay particles could interact with the charged surfaces (positive) of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates, and also to bond the fine particulates to larger (+#200) limestone particles. One mile test roads were constructed in Tama, Appanoose, and Hancock counties in Iowa using Bentonite treatment levels (by weight of aggregate) ranging from 3.0 to 12.0%. Construction was accomplished by adding dry Bentonite to the surfacing material and then dry road mixing. The soda ash/water solution (dispersing agent) was spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 2 to 3 inch slump concrete. Two motor graders working in tandem provided rapid mixing. Following wet mixing the material was surface spread and compacted by local traffic. Quantitative and qualitative periodic evaluations and testing of the test roads was conducted with respect to dust generation, crust development, roughness, and braking characteristics. As the Bentonite treatment level increased dust generation decreased. From a cost/benefit standpoint, an optimum level of treatment is about 8% (by weight of aggregate). For roads with light traffic, one application at this treatment level resulted in a 60-70% average dust reduction in the first season, 40-50% in the second season, and 20-30% in the third season. Crust development was rated at two times better than untreated control sections. No discernible trend was evident with respect to roughness. There was no evident difference in any of the test sections with respect to braking distance and braking handling characteristics, under wet surface conditions compared to the control sections. Chloride treatments are more effective in dust reduction in the short term (3-4 months). Bentonite treatment is capable of dust reduction over the long term (2-3 seasons). Normal maintenance blading operations can be used on Bentonite treated areas. Soda ash dispersed Bentonite treatment is estimated to be more than twice as cost effective per percent dust reduction than conventional chloride treatments, with respect to time. However, the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced significantly after treatment there is still dust being generated. Video evidence indicates that the dust cloud in the Bentonite treated sections does not rise as high, or spread as wide as the cloud in the untreated section. It also settles faster than the cloud in the untreated section. This is considered important for driving safety of following traffic, and for nuisance dust invasion of residences and residential areas. The Bentonite appears to be functioning as a bonding agent.