13 resultados para Contraction homogeneity

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the impact of trade liberalization, removal of production subsidies, and elimination of consumption distortions in world sugar markets using a partial-equilibrium international sugar model calibrated on 2002 market data and current policies. The removal of trade distortions alone induces a 27% price increase while the removal of all trade and production distortions induces a 48% increase by 2011/12 relative to the baseline. Aggregate trade expands moderately, but location of production and trade patterns change substantially. Protectionist OECD countries (the EU, Japan, the US) experience an import expansion or export reduction and significant contraction in production in unfettered markets. Competitive producers in both OECD countries (Australia) and non-OECD countries (Brazil, Cuba), and even some protected producers (Indonesia, Turkey), expand production when all distortions are removed. Consumption distortions have marginal impacts on world markets and location of production. We discuss the significance of these results in the context of mounting pressures to increase market access in highly protected OECD countries and the impact on non-OECD countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments with early entry light sawing of Portland cement concrete (PCC) contraction joints began in Iowa in 1989. Since that time, changes in early sawing equipment have occurred as well as changes in specifications for sawing. The option to use early sawing for transverse contraction joints was specified in 1992. A problem happening occasionally with early sawing was the break out of some of the concrete around the end of the joint as the saw blade approached the edge of the slab. To prevent this, it was proposed that the sawing would terminate approximately 1/2" to 3/4" before the edge of the slab, creating a "short joint". This procedure would also leave a concrete "dam" to prevent the run-out and waste of the hot liquid joint sealant onto the shoulder. It would also eliminate the need for the labor and material for applying a duct tape dam at the open ends of each sawed joint to stop hot liquid sealant run-out Agreements were made with the contractor to apply the "short joint" technique for 1 day of paving. The evaluation and results are compared with an adjoining control section. The research found no negative aspects from sawing the "short joint". Three specific findings were noted. They are the following: 1) No joint end "blow-out" spalls of concrete occurred. 2) The need for the duct tape dam to stop liquid sealant overflow was eliminated. 3) Joint end corner spalls appear to be caused mainly by construction shouldering operations equipment. The "short joint" sawing technique can be routinely applied to early entry sawed transverse contraction joints with expectations of only positive results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most pavement contraction joint seals in Iowa, in general, have been performing in less than a satisfactory manner. The effective life of the seals, in maintaining a watertight joint, has been only from two to five years. In search of improvements, research was proposed to evaluate preformed neoprene joint seals. The performance of those seals was to be compared mainly with the hot poured rubberized asphalt sealants and cold applied silicone sealants or other sealants commonly used at the time this research began. Joint designs and methods of sawing were also investigated. All evaluations were done in new portland cement concrete (PCC) pavements. Three projects were initially selected and each included a research section of joint sealing. Some additional sites were later added for evaluation. Several joint sealants were evaluated at each research site. The various sites included high, medium and low levels of traffic. Evaluations were done over a five-year period. Neoprene joint seals provided better performance than hot or cold field formed joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Premature failure of concrete pavement contraction joint seals is an ongoing and costly problem for the Iowa Department of Transportation. Several joint seal test sections consisting of variations in sawing methods, joint cleaning techniques, sealant installation, and sealant types have been established over the past few years. Laboratory analysis and field inspections were done as a part of the tests, and core samples were taken for laboratory adhesion pull tests. Such methods often cover specifically small areas and may not expose hidden failures. Some tests are also labor-intensive and destructive, especially that of coring. An innovative, nondestructive, broad coverage joint seal tester that yields quick results has been designed and developed for evaluation of pavement joint seal performance. The Iowa vacuum joint seal tester (IA-VAC) applies a low vacuum above a joint seal that has been spray-covered with a foaming water solution. Any unsealed area or leak that exists along the joint will become quickly and clearly visible by the development of bubbles at the leak point. By analyzing the results from the IA-VAC tests, information on the number and types of leaks can be obtained; such information will help identify the source of the problem and direct efforts toward a solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1951 Greene County and the Iowa Highway Research Board paved County Road E-33 from Iowa Highway No. 17 (now Iowa 4) to Farlin with various thicknesses [ranging from 4.5 in. (11.4 cm) to 6 in. (15.2 cm)] of portland cement concrete pavement. The project, designated HR-9, was divided into ten research sections. This formed pavement was placed on the existing grade. Eight of the sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29 ft 7 in. (9.02 m) intervals were used in two 4.5-in. (11.4-cm) thick sections. The concrete in one of the sections was air entrained. Signs denoting the design and limits of the research sections were placed along the roadway. The pavement has performed well over its 28-year life, carrying a light volume of traffic safely while requiring no major maintenance. The 4.5-in. (11.4-cm) thick mesh-reinforced pavement with contraction joints has exhibited the best overall performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to evaluate the performance of portland cement concrete pavement contraction joints utilizing a variety of sealants and joint preparations and to identify an effective sealant system. The variables evaluated were: (1) sealant material; (2) joint preparation; (3) size of saw cut (sealant reservoir); and (4) the use of backing material. This progress report contains project results to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If adequately designed and high quality material and good construction practices are used, portland cement concrete is very durable. This is demonstrated by the oldest pavement in Iowa (second oldest in the U.S.) paved in 1904, which performed well for 70 years without resurfacing. The design thickness is an important factor in both the performance and cost of pavement. The objective of this paper is to provide a 30-year performance evaluation of a pavement constructed to determine the required design thickness for low volume secondary roadways. In 1951 Greene County and the Iowa Highway Research Board of the Iowa Department of Transportation initiated a four-mile (6.4 km) demonstration project to evaluate thicknesses ranging from 4-1/2" (11.4 cm) to 6" (15.2 cm). The project, consisting of 10 research sections, was formed pavement placed on a gravel roadbed with very little preparation except for redistribution of the loose aggregate. Eight sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29' 7" (9.02 m) intervals were used in two 4-1/2" (11.4 cm) thick sections. The only air entrained section was non-reinforced. The pavement performed well over its 30-year life carrying a light volume of traffic and did not require major maintenance. There was substantial cracking with average slab length varying directly with thickness. The 4-1/2" (11.4 cm) thick non-air entrained, mesh-reinforced pavement with contraction joints has performed the best.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iowa's first portland cement concrete pavement was constructed in 1904 in the City of LeMars. A portion of that pavement served traffic until 1974 at which time it was resurfaced. The first rural Iowa pee pavement (16' wide, 6" to 7" thick) was constructed under the direction of the Iowa State Highway Commission in 1913. Some of Iowa's early pavements had transverse joints at 25-foot spacings. At that time, joint spacings across the nation ranged from 24 to 100 ft. There have been many changes in joint design over the years with some pavements being constructed without transverse joints. Joint spacing on Iowa primary pavements has generally remained around 20 feet with this spacing having been adopted as an Iowa standard in 1954. Until 1978 it was common to specify a 40-foot joint spacing on secondary pavements. The performance of the pavements with joint spacings greater than 20 feet, and in some cases no contraction joints, generated a 1955 research project on joint spacing. This project was 16 miles long containing sections without contraction joints and sections with joints sawed at intervals of 20, 50 and 80 feet. Approximately half of the sawed joints were left unsealed. The results of this research supported the 20-foot spacing, but were inconclusive regarding the benefits of sealing. One of the desired characteristics of joint sealing material is that it should act as a moisture barrier and prevent the intrusion of surface water. It was generally accepted from past experience that the hot poured type joint seals did not provide this effective moisture barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-stage mixing process for concrete involves mixing a slurry of cementitious materials and water, then adding the slurry to coarse and fine aggregate to form concrete. Some research has indicated that this process might facilitate dispersion of cementitious materials and improve cement hydration, the characteristics of the interfacial transition zone (ITZ) between aggregate and paste, and concrete homogeneity. The goal of the study was to find optimal mixing procedures for production of a homogeneous and workable mixture and quality concrete using a two-stage mixing operation. The specific objectives of the study are as follows: (1) To achieve optimal mixing energy and time for a homogeneous cementitious material, (2) To characterize the homogeneity and flow property of the pastes, (3) To investigate effective methods for coating aggregate particles with cement slurry, (4) To study the effect of the two-stage mixing procedure on concrete properties, (5) To obtain the improved production rates. Parameters measured for Phase I included: heat of hydration, maturity, and rheology tests were performed on the fresh paste samples, and compressive strength, degree of hydration, and scanning electron microscope (SEM) imaging tests were conducted on the cured specimens. For Phases II and III tests included slump and air content on fresh concrete and compressive and tensile strengths, rapid air void analysis, and rapid chloride permeability on hardened concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an ongoing drive towards improvements and achieving success in effective and long term sealing of portland cement concrete pavement contraction joints. A variety of joint sealing products and procedures have been applied in Iowa in search of improvements in seal performance. Hot poured rubberized asphalt products were mainly used for sealing all joints in earlier years for highways. In the 1980s, silicone sealant products were becoming popular, especially for the major highways. As a high level of sealant performance was not achieved from silicones in Iowa conditions, other sealing products were tried. Preformed neoprene compression seals are being tried as a substitution for silicone sealants. Due to high costs of materials and installation with neoprene seals, the search for improvements through other joint sealing products and procedures continued. An agreement was made with Phoenix, North America, Inc., to provide and install preformed Ethylene Propylene Diene Monomer (EPDM) compression joint seals. The research site was a 600 ft (183 m) test section of northbound I-29 in Pottawattamie County, Iowa. Seal installation was done August 20, 1992. Seal performance has been good over the past seven years and the seals are still showing no significant signs of decreasing performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integral abutment bridges are constructed without an expansion joint in the superstructure of the bridge; therefore, the bridge girders, deck, abutment diaphragms, and abutments are monolithically constructed. The abutment piles in an integral abutment bridge are vertically orientated, and they are embedded into the pile cap. When this type of a bridge experiences thermal expansion or contraction, horizontal displacements are induced at the top of the abutment piles. The flexibility of the abutment piles eliminates the need to provide an expansion joint at the inside face to the abutments: Integral abutment bridge construction has been used in Iowa and other states for many years. This research is evaluating the performance of integral abutment bridges by investigating thermally induced displacements, strains, and temperatures in two Iowa bridges. Each bridge has a skewed alignment, contains five prestressed concrete girders that support a 30-ft wide roadway for three spans, and involves a water crossing. The bridges will be monitored for about two years. For each bridge, an instrumentation package includes measurement devices and hardware and software support systems. The measurement devices are displacement transducers, strain gages, and thermocouples. The hardware and software systems include a data-logger; multiplexers; directline telephone service and computer terminal modem; direct-line electrical power; lap-top computer; and an assortment of computer programs for monitoring, transmitting, and management of the data. Instrumentation has been installed on a bridge located in Guthrie County, and similar instrumentation is currently being installed on a bridge located in Story County. Preliminary test results for the bridge located in Guthrie County have revealed that temperature changes of the bridge deck and girders induce both longitudinal and transverse displacements of the abutments and significant flexural strains in the abutment piles. For an average temperature range of 73° F for the superstructure concrete in the bridge located in Guthrie County, the change in the bridge length was about 1 118 in. and the maximum, strong-axis, flexural-strain range for one of the abutment piles was about 400 micro-strains, which corresponds to a stress range of about 11,600 psi.