9 resultados para Contoured Moving Barrier-to-Vehicle Impact Tests.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The dynamic interaction of vehicles and bridges results in live loads being induced into bridges that are greater than the vehicle’s static weight. To limit this dynamic effect, the Iowa Department of Transportation (DOT) currently requires that permitted trucks slow to five miles per hour and span the roadway centerline when crossing bridges. However, this practice has other negative consequences such as the potential for crashes, impracticality for bridges with high traffic volumes, and higher fuel consumption. The main objective of this work was to provide information and guidance on the allowable speeds for permitted vehicles and loads on bridges .A field test program was implemented on five bridges (i.e., two steel girder bridges, two pre-stressed concrete girder bridges, and one concrete slab bridge) to investigate the dynamic response of bridges due to vehicle loadings. The important factors taken into account during the field tests included vehicle speed, entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, and semi-truck), and bridge geometric characteristics (i.e., long span and short span). Three entrance conditions were used: As-is and also Level 1 and Level 2, which simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between the bridge end and approach slab and directly next to the joint, respectively. The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) for all gauges installed on each bridge under the different loading scenarios.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
The Rebuild Iowa Education Task Force is composed of Iowans with experience and expertise related to the impact of the tornadoes, storms, and floods of 2008 on the educational system in Iowa. The massive damage greatly impacted educational facilities and enrollment, resulting in thousands of displaced students and significant long-term rebuilding needs. In addition, the education system is a “community center,” and in many ways acts as a first responder to Iowans experiencing the disasters. It is important to also recognize this role and the need for “non-educational” (and often non-quantifiable) supports as a part of the overall recovery effort. There are a few parts of the state that sustained significant structural and other damage as a result of the disasters. However, many school districts and educational institutions throughout the state experienced damage that resulted in re-allocating building usage, enrollment issues (because of housing and relocation issues in the community), or use of school facilities to assist in the recovery efforts (by housing displaced community agencies and providing temporary shelter for displaced Iowans). At this time, damage estimates are only estimates and numbers are revised often. Estimates of damage are being developed by multiple agencies, including FEMA, the Iowa Department of Education, insurance companies, and schools themselves, since there are many different types of damage to be assessed and repaired. In addition to structural damage, educational institutions and communities are trying to find ways to quantify sometimes unquantifiable data, such as future revenue capabilities, population declines, and impact on mental health in the long-term. The data provided in this report is preliminary and as up to date as possible; information is updated on a regular basis as assessments continue and damage estimates are finalized. Supplemental Information to the August 2008 Education Task Force Report
Resumo:
Traumatic Brain Injury (TBI) impacts the lives of thousands of Iowans each year. The effects of brain injury (often called the "silent epidemic" because resulting injury is often not visible to others) are cognitive, emotional, and social but may also result in physical disability. This state plan, created by the Governor's Advisory Council on Brain Injuries, is intended to provide guidance for brain injury services and prevention activities in Iowa. This is the fourth Iowa State Plan for Brain Injury. In addition to a statewide needs assessment, development of this plan included recommendations made by the Mental Health and Disability Services Redesign Brain Injury Work-group. For the first time in the history of TBI surveillance in Iowa, the numbers and rates of TBI deaths are decreasing, however hospitalizations and emergency department visits resulting from TBI are steadily increasing. This trend is likely due to the decrease in motor vehicle accidents and improved hospitalization protocols. Looking to the future, the Advisory Council on Brain Injuries identified goals in each of four focus areas. These focus areas are: #1 Individual and family access; dedicated to the enhancement of the lives of individuals with brain injuries and their families. #2 Service and support availability; #3 Service system enhancements; continued funding growth and public awareness campaigns that draw attention to the impact of brain injury. #4 Brain injury prevention; working to prevent and reduce three of the most common causes of brain injury are falls, no helmet use, and motor vehicle crashes.
Resumo:
The liquid and plastic limits of a soil are consistency limits that were arbitrarily chosen by Albert Atterberg in 1911. Their determination is by strictly empirical testing procedures. Except for the development of a liquid limit device and subsequent minor refinements the method has remained basically unchanged for over a half century. The empirical determination of an arbitrary limit would seem to be contrary to the very foundations of scientific procedures. However, the tests are relatively simple and the results are generally acceptable and valuable in almost every conceivable use of soil from an engineering standpoint. Such a great volume of information has been collected and compiled by application of these limits to cohesive soils, that it would be impractical and virtually impossible to replace the tests with a more rational testing method. Nevertheless, many believe that the present method is too time consuming and inconsistent. Research was initiated to investigate the development of a rapid and consistent method by relating the limits to soil moisture tension values determined by porous plate and pressure membrane apparatus. With the moisture tension method, hundreds of samples may be run at one time, operator variability is minimal, results are consistent, and a high degree of correlation to present liquid limit tests is possible.
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.