7 resultados para Complex variable
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This document provides design and stratagies for the capital complex. Also for future physical development of the complex.
Resumo:
This document provides design and strategies for the capital complex. Also for future physical development of the complex.
Resumo:
Special investigation of the University of Northern Iowa Events Complex Concessions for the period October 1, 2006 through March 31, 2012
Resumo:
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard deviation of speeds with VASL was higher. The increase in standard deviation may be due to the advisory nature of VASL. The speed limit compliance with VASL was about eight times greater than without VASL. At the congested sites, the VASL were effective in making drivers slow down gradually as they approached the work zone, reducing any sudden changes in speeds. Mobility-wise the use of VASL resulted in a decrease in average queue length, throughput, number of stops, and an increase in travel time. Several surrogate safety measures also demonstrated the benefits of VASL in congested work zones. VASL deployments in rural work zones resulted in reductions in mean speed, speed variance, and 85th percentile speeds downstream of the VASL sign. The study makes the following recommendations based on the case studies investigated: 1. The use of VASL is recommended for uncongested work zones to achieve better speed compliance and lower speeds. Greater enforcement of regulatory speed limits could help to decrease the standard deviation in speeds; 2. The use of VASL to complement the static speed limits in rural work zones is beneficial even if the VASL is only used to display the static speed limits. It leads to safer traffic conditions by encouraging traffic to slow down gradually and by reminding traffic of the reduced speed limit. A well-designed VASL algorithm, like the P5 algorithm developed in this study, can significantly improve the mobility and safety conditions in congested work zones. The use of simulation is recommended for optimizing the VASL algorithms before field deployment.
Resumo:
The present study is an integral part of a broader study focused on the design and implementation of self-cleaning culverts, i.e., configurations that prevent the formation of sediment deposits after culvert construction or cleaning. Sediment deposition at culverts is influenced by many factors, including the size and characteristics of material of which the channel is composed, the hydraulic characteristics generated under different hydrology events, the culvert geometry design, channel transition design, and the vegetation around the channel. The multitude of combinations produced by this set of variables makes the investigation of practical situations a complex undertaking. In addition to the considerations above, the field and analytical observations have revealed flow complexities affecting the flow and sediment transport through culverts that further increase the dimensions of the investigation. The flow complexities investigated in this study entail: flow non-uniformity in the areas of transition to and from the culvert, flow unsteadiness due to the flood wave propagation through the channel, and the asynchronous correlation between the flow and sediment hydrographs resulting from storm events. To date, the literature contains no systematic studies on sediment transport through multi-box culverts or investigations on the adverse effects of sediment deposition at culverts. Moreover, there is limited knowledge about the non-uniform, unsteady sediment transport in channels of variable geometry. Furthermore, there are few readily useable (inexpensive and practical) numerical models that can reliably simulate flow and sediment transport in such complex situations. Given the current state of knowledge, the main goal of the present study is to investigate the above flow complexities in order to provide the needed insights for a series of ongoing culvert studies. The research was phased so that field observations were conducted first to understand the culvert behavior in Iowa landscape. Modeling through complementary hydraulic model and numerical experiments was subsequently carried out to gain the practical knowledge for the development of the self-cleaning culvert designs.
Resumo:
The Prairie Trail Development Area is located in the southern portion of Ankeny, Iowa. This development area is located in an area that was formally occupied by the Des Moines Ordnance Plant. The Des Moines Ordnance Plant was constructed for the production and testing of small arms munitions for use during World War II. The Landfill and Lagoon Complex was utilized for disposal of wastes from the ordnance plant and also from various entities that utilized the site property until 1991. The United States Environmental Protection Agency (EPA) is verseeing the cleanup of the Landfill and Lagoon Complex. A portion of the remainder of the site property had been used for burning of scrap explosives, the storage and disposal of chemicals, a disposal pond, testing of products, and various munitions manufacturing activities. The Iowa Department of Natural Resources (IDNR) is overseeing the cleanup of this remaining portion of the site property. The Iowa Department of Public Health has been contacted by residents within the Prairie Trail Development Area and by individuals that have an interest in relocating to the Prairie Trail Development Area. These residents are concerned with any environmental contamination that will be left after site remedial activities are completed. These residents want to know if any remaining environmental contamination will adversely impact their health or the health of their families.
Resumo:
This report proposes, that for certain types of highway construction projects undertaken by the Iowa Department of Transportation, a scheduling technique commonly referred to as linear scheduling may be more effective than the Critical Path Method scheduling technique that is currently being used. The types of projects that appear to be good candidates for the technique are those projects that have a strong linear orientation. Like a bar chart, this technique shows when an activity is scheduled to occur and like a CPM schedule it shows the sequence in which activities are expected to occur. During the 1992 construction season, the authors worked with an inlay project on Interstate 29 to demonstrate the linear scheduling technique to the Construction Office. The as-planned schedule was developed from the CPM schedule that the contractor had developed for the project. Therefore, this schedule represents what a linear representation of a CPM schedule would look like, and not necessarily what a true linear schedule would look like if it had been the only scheduling technique applied to the project. There is a need to expand the current repertoire of scheduling techniques to address those projects for which the bar chart and CPM may not be appropriate either because of the lack of control information or due to overly complex process for the actual project characteristics. The scheduling approaches used today on transportation projects have many shortcomings for properly modeling the real world constraints and conditions which are encountered. Linear project's predilection for activities with variable production rates, a concept very difficult to handle with the CPM, is easily handled and visualized with the linear technique. It is recommended that work proceed with the refinement of the method of linear scheduling described above and the development of a microcomputer based system for use by the Iowa Department of Transportation and contractors for its implementation. The system will be designed to provide the information needed to adjust schedules in a rational understandable method for monitoring progress on the projects and alerting Iowa Department of Transportation personnel when the contractor is deviating from the plan.