6 resultados para Commodity currencies
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A dynamic, three-commodity rational-expectations storage model is used to compare the impact of the Federal Agricultural Improvement and Reform (FAIR) Act of 1996 with a freemarket policy and with the agricultural policies that preceded the FAIR Act. Results support the hypothesis that the changes made when FAIR was enacted did not lead to permanent significant increases in the volatility of farm prices or revenues. An important finding is that the main economic impacts of the Pre-FAIR scenario, relative to the free-market regime were to transfer income to farmers and to substitute government storage for private storage in a way that did little to support prices or to stabilize farm incomes.
Resumo:
We investigate the interface between trade and invasive species (IS) risk, focusing on the existing tariff escalation in agro-forestry product markets and its implication for IS risk. Tariff escalation in processed agro-forestry products exacerbates the risk of IS by biasing trade flows toward increased trade of primary commodity flows and against processed-product trade. We show that reducing tariff escalation by lowering the tariff on processed goods increases allocative efficiency and reduces the IS externality, a win-win situation. We also identify policy menus for trade reforms involving tariffs on both raw input and processed goods, leading to winwin situations.
Resumo:
The ongoing growth of corn-based ethanol production raises some fundamental questions about what impact continued growth will have on U.S. and world agriculture. Estimates of the long-run potential for ethanol production can be made by calculating the corn price at which the incentive to expand ethanol production disappears. Under current ethanol tax policy, if the prices of crude oil, natural gas, and distillers grains stay at current levels, then the break-even corn price is $4.05 per bushel. A multi-commodity, multi country system of integrated commodity models is used to estimate the impacts if we ever get to $4.05 corn. At this price, corn-based ethanol production would reach 31.5 billion gallons per year, or about 20% of projected U.S. fuel consumption in 2015. Supporting this level of production would require 95.6 million acres of corn to be planted. Total corn production would be approximately 15.6 billion bushels, compared to 11.0 billion bushels today. Most of the additional corn acres come from reduced soybean acreage. Wheat markets would adjust to fulfill increased demand for feed wheat. Corn exports and production of pork and poultry would all be reduced in response to higher corn prices and increased utilization of corn by ethanol plants. These results should not be viewed as a prediction of what will eventually materialize. Rather, they indicate a logical end point to the current incentives to invest in corn-based ethanol plants.
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.
Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global Biofuels, June 2011
Resumo:
This analysis uses the 2011 FAPRI-CARD (Food and Agricultural Policy Research Institute–Center for Agricultural and Rural Development) baseline to evaluate the impact of four alternative scenarios on U.S. and world agricultural markets, as well as on world fertilizer use and world agricultural greenhouse gas emissions. A key assumption in the 2011 baseline is that ethanol support policies disappear in 2012. The baseline also assumes that existing biofuel mandates remain in place and are binding. Two of the scenarios are adverse supply shocks, the first being a 10% increase in the price of nitrogen fertilizer in the United States, and the second, a reversion of cropland into forestland. The third scenario examines how lower energy prices would impact world agriculture. The fourth scenario reintroduces biofuel tax credits and duties. Given that the baseline excludes these policies, the fourth scenario is an attempt to understand the impact of these policies under the market conditions that prevail in early 2011. A key to understanding the results of this fourth scenario is that in the absence of tax credits and duties, the mandate drives biofuel use. Therefore, when the tax credits and duties are reintroduced, the impacts are relatively small. In general, the results show that the entire international commodity market system is remarkably robust with respect to policy changes in one country or in one sector. The policy implication is that domestic policy changes implemented by a large agricultural producer like the United States can have fairly significant impacts on the aggregate world commodity markets. A second point that emerges from the results is that the law of unintended consequences is at work in world agriculture. For example, a U.S. nitrogen tax that might presumably be motivated for environmental benefit results in an increase in world greenhouse gas emissions. A similar situation occurs in the afforestation scenario in which crop production shifts from high-yielding land in the United States to low-yielding land and probably native vegetation in the rest of the world, resulting in an unintended increase in global greenhouse gas emissions.
Resumo:
Brushy Creek is a tributary of the Raccoon River, which is a regular source of drinking water for over 400,000 Iowans. Regular monitoring by Des Moines Water Works (DMWW) and Agriculture’s Clean Water Alliance (ACWA) over the last eight years has shown the stream to be highly impaired for coliform bacteria and nitrate. Both Brushy Creek and the Raccoon River are on the 303(d) impaired waterbody list. A December 2005 fish kill in Brushy Creek resulted in administrative actions against seven livestock producers. Several open feed lots exist in the watershed. The community of Roselle (in the Brushy Creek watershed) has been identified by IDNR as unsewered, and many dwellings throughout the watershed discharge untreated human waste. No Watershed Improvement Association (WIA) exists in this sparsely-populated area. This outcome-based project will: • Enhance nutrient and manure management to reduce agricultural inputs to the stream. • Assess the amount of human waste reaching the stream from Roselle. • Engage and inform local residents so a WIA can be formed. • Monitor performance through a rigorous water and soil testing program. This project embraces a concept of participation from all levels of government, commodity organizations, and the private sector. The largest drinking water utility in the state will lead and administer this effort. The participating parties will work to establish a functioning WIA so that progress achieved through this project will be robust and long-lasting. The participants believe this will be the most effective approach to correct the situation, and will serve as a model for other problem watersheds throughout the state.