16 resultados para Climate class
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
On April 27, 2007, Iowa Governor Chet Culver signed Senate File 485, a bill related to greenhouse gas emissions. Part of this bill created the Iowa Climate Change Advisory Council (ICCAC), which consists of 23 governor-appointed members from various stakeholder groups, and 4 nonvoting, ex officio members from the General Assembly. ICCAC’s immediate responsibilities included submitting a proposal to the Governor and General Assembly that addresses policies, cost-effective strategies, and multiple scenarios designed to reduce statewide greenhouse gas emissions. Further, a preliminary report was submitted in January 2008, with a final proposal submitted in December 2008. In the Final Report, the Council presents two scenarios designed to reduce statewide greenhouse gas emissions by 50% and 90% from a 2005 baseline by the year 2050. For the 50% reduction by 2050, the Council recommends approximately a 1% reduction by 2012 and an 11% reduction by 2020. For the 90% reduction scenario, the Council recommends a 3% reduction by 2012 and a 22% reduction 2020. These interim targets were based on a simple extrapolation assuming a linear rate of reduction between now and 2050. In providing these scenarios for your consideration, ICCAC approved 56 policy options from a large number of possibilities. There are more than enough options to reach the interim and final emission targets in both the 50% and 90% reduction scenarios. Direct costs and cost savings of these policy options were also evaluated with the help of The Center for Climate Strategies, who facilitated the process and provided technical assistance throughout the entire process, and who developed the Iowa Greenhouse Gas Emissions Inventory and Forecast in close consultation with the Iowa Department of Natural Resources (IDNR) and many Council and Sub-Committee members. About half of the policy options presented in this report will not only reduce GHG emissions but are highly cost-effective and will save Iowans money. Still other options may require significant investment but will create jobs, stimulate energy independence, and advance future regional or federal GHG programs.
Resumo:
Iowans have long shared a deep commitment to giving our children the best education possible. We recognize young people today must meet higher expectations than ever to thrive in this global, knowledge-based economy. For the sake of our children and our state, it is vitally important that we build on our tradition of excellence to improve our schools. Iowa’s house of education still has a strong foundation, but it is also in need of a major remodel to be ready for the days ahead.
Resumo:
In advance of the 2012 legislative session, I am pleased to provide for your review this legislative brief on Gov. Terry E. Branstad’s and Lt. Gov. Kim Reynolds’ education reform package. The purpose is to provide a broad overview of the components of the package, give some examples of where similar approaches are in place, and provide cost estimates. In collaboration with the Governor’s Office, the staff at the Iowa Department of Education and I have worked intensively to prepare a set of legislative proposals worthy of careful consideration. I believe this package puts us on the path to our unshakable vision of having one of the best school systems in the world. Iowa’s children deserve nothing less.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
Crash Rates and Crash Densities on Secondary Roads in Iowa by Functional Class produced by the Iowa Department of Transportation.
Resumo:
Contains information to be used by teachers in classrooms including history of the the United States flag, the government of Iowa, the Constitution of Iowa, the birth of Americanism, the Declaration of Independence, the Constitution of the United States, Lincoln's Gettysburg Address.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
The Iowa Department of Education has joined the Office of the Governor to prepare a set of legislative proposals that will bring Iowa closer to its goal of providing a world-class education to all children, no mater where they live. This legislative brief serves as an overview of the legislation, which I encourage you to read and discuss in greater detail. the goals behind these policies are straightforward: Comprehensive and systematically raise and support the teaching profession while expanding efforts to customize instruction to every student's passion and talents. Iowa's children deserve the best education can provide so they leave our schools with the knowledge and skills necessary for successful and rewarding lives. Iowa has many good schools with hard-working, talented educators who deserves our respect and appreciation. While we honor the past work of generations of Iowans who built a strong foundation, it is our responsibility - and our turn - to make a focused, dedicated effort to improve Iowa's schools. We stand at a pivotal moment in Iowa storied education history, in which we have the opportunity and will as community to make the transition from being "good" to being "great".
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
This project consisted of slipforming a 4-inch thick econocrete subbase on a 6-mile section of US 63. The project location extends south from one mile south of Denver, Iowa to Black Hawk County Road C-66 and consisted of the reconstruction and new construction of a divided four-lane facility. The econocrete was placed 27.3 feet wide in a single pass. Fly ash was used in this field study to replace 30, 45 and 60 percent of the portland cement in three portland cement econocrete base paving mixes. The three mixes contained 300, 350 and 400 pounds of cementitious material per cubic yard. Two Class "C" ashes from Iowa approved sources were used. The ash was substituted on the basis of one pound of ash for each pound of cement removed. The work was done October 6-29, 1987 and May 25-June 9, 1988. The twelve subbase mixes were placed in sections 2500 to 3000 feet in length on both the north and southbound roadways. Compressive strengths of all mixes were determined at 3 and 28 days of age. Flexural strengths of all mixes were determined at 7 and 14 days. In all cases strengths were adequate. The freeze/thaw durability of the econocrete mixes used was reduced by increased fly ash levels but remained above acceptable limits. The test results demonstrate the feasibility of producing econocrete with satisfactory properties even using fly ash at substitution rates up to 45 percent.
Resumo:
The freeze-thaw resistance of concretes was studied. Nine concrete mixes, made with five cements and cement-Class C fly ash combinations, were exposed to freeze-thaw cycling following 110 to 222 days of moist curing. Prior to the freeze-thaw cycling, the specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The influence of a wet/dry treatment was also studied. Infilling of ettringite in entrained air voids was observed in the concretes tested. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The concretes with 15% Class C fly ash replacement show more infilling in their air voids. It was found that the influence of the infilling on the freeze-thaw durability relates to the air spacing factor. The greater the spacing factor, the more expansion under the freeze-thaw cycling. The infilling seems to decrease effective air content and to increase effective spacing factor. The infilling also implies that the filled air voids are water-accessible. These might lead to concrete more vulnerable to the freeze-thaw attack. By combining the above results with field observations, one may conclude that the freeze-thaw damage is a factor related to premature deterioration of portland cement concrete pavements in Iowa.
Resumo:
The main sources of coarse aggregate for secondary slip form paving in Southwest Iowa exhibit undesirable "D" cracking. "D" cracking is a discoloration of the concrete caused by fine, hairline cracks. These cracks are caused by the freezing and thawing of moisture inside the coarse aggregate. The cracks are often hour glass shaped, are parallel to each other, and occur along saw joints. The B-4, a typical secondary mix, utilizes 50% fine aggregate and 50% coarse aggregate. It has been proposed that a concrete mix with less coarse aggregate and more fine aggregate might impede this type of deterioration. The Nebraska Standard 47B Mix, a 70% fine aggregate, and 30% coarse aggregate mix, as used by Nebraska Department of Roads produces concrete with ultimate strengths in excess of 4500 psi but because of the higher cost of cement (it is a six bag per cubic yard mix) is not competitive with our present secondary mixes. The sands of Southwest Iowa generally have poorer mortar strengths than the average Iowa Sand. Class V Aggregate also found in Southwest Iowa has a coarser sand fraction, therefore it has a better mortar strength, but exhibits an acidic reaction and therefore must be·used with limestone. This illustrates the need to find a mix for use in Southwest Iowa that possesses adequate strength and satisfactory durability at a low cost. The purpose of this study is to determine a concrete mix with an acceptable cement content which will produce physical properties similar to that of our present secondary paving mixes.
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.
Resumo:
Fast track concrete has proven to be successful in obtaining high early strengths. This benefit does not come without cost. Type III cement and insulation blankets to accelerate the cure add to its expense when compared to conventional paving. This research was intended to determine the increase in time required to obtain opening strength when a fast track mix utilized conventional Type I cement and also used a conventional cure. Standard concrete mixes also were tested to determine the acceleration of strength gain when cured with insulation blankets. The goal was to determine mixes and procedures which would result in a range of opening times. This would allow the most economical design for a particular project and tailor it to that projects time restraint. Three mixes were tested: Class F, Class C, and Class B. Each mix was tested with one section being cured with insulation blankets and another section without. All used Type I cement. Iowa Department of Transportation specifications required 500 psi of flexural strength before a pavement can be opened to traffic. The Class F mix with Type I cement and using insulation blankets reached that strength in approximately 36 hours, the Class C mix using the blankets in approximately 48 hours, and the Class F mix without covers in about 60 hours. (Note: Class F concrete pavement is opened at 400 psi minimum and Class F bonded overlay pavement at 350 psi.) The results showed a significant improvement in early strength gain by the use of insulation blankets. The Type I cement could be used in mixes intended for early opening with sacrifices in time when compared to fast track but are still much sooner than conventional pavement. It appears a range of design alternatives is possible using Type I cement both with and without insulating blankets.