7 resultados para Clay dispersion

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

County Profile

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general soil map, which is a color map, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas. To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report on a special investigation of the Clay Central-Everly Community School District for the period July 1, 2005 through November 30, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audit report on Clay Central/Everly Community School District in Royal, Iowa for the year ended June 30, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the clay minerals in a gumbotil associated with the Mahaska soil series in Keokuk County, Iowa, indicates that the principal clay mineral is a dioctahedral calcium montmorillonite. Other clay minerals present in this gumbotil are kaolinite and mica, although they are in much smaller percentages. The investigation also pointed out difficulties involved in analyzing this type of soil by standard X-ray procedures and the complications introduced in the analysis of soil samples with high iron content utilizing standard accepted diffraction techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.