3 resultados para Chicago and North Western Railway Company.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Innovative Rail Ltd. of Cedar Rapids, Iowa produced a new rail/highway crossing gate arm that shows promise in two areas: a. Minimizing arm breakage, and b. Added target value to motorists. The new gate was demonstrated to the Chicago and North Western Transportation Company, and that railroad has requested its use at two crossings on an "experimental basis" to determine if its installation provides relief in those areas. On April 18, 1986, the Department observed a test of the material under field conditions with the Transportation Company. The gate received four mid-center strikes at 5 MPH by a company truck while in the lowered position, and showed no damage. In a fifth mid-center strike at 15 MPH, the gate was visibly damaged at the connection to its raising mechanism, but continued to function though at a 5-10 degree drop. Several pictures of the gate and its saddle mechanism are shown in Appendix A of this report. Innovative Rail established distributorships in the United States and Canada, and has since gone out of business.
Resumo:
Five Seasons Transportation & Parking (FSTP) and the Johnson County Council of Governments (JCCOG) are interested in evaluating the feasibility of prospective passenger rail service(s) that would operate over existing trackage of the Cedar Rapids and Iowa City Railway Company (CRANDIC), seen below left, and/or the Iowa Interstate Railroad System (IAIS), seen below right, connecting Cedar Rapids, Iowa City and the Amana Colonies. To perform the study, FSTP and JCCOG selected R.L. Banks & Associates, Inc. (RLBA) as Prime Contractors, HNTB Corporation (HNTB) and Snyder & Associates, Inc. (Snyder) as Subcontractors, hereafter Consultant Team. Both railroads participated in the study and contributed time and resources, as did many local government and civic organizations. The purpose of the study is to determine whether it is feasible to establish regularly scheduled passenger rail service and/or special event excursion rail service, in conjunction with the Five Seasons Transit system, Iowa City Transit, East Central Iowa Transit, Coralville Transit and the University of Iowa CAMBUS.
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.