12 resultados para Chicago Turn-Gemeinde.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.
Resumo:
Iowa’s investment in the Chicago to Iowa City passenger rail service will produce more ongoing benefits than costs for Iowa residents and taxpayers over the next 30 years. An Iowa investment of $20.6 million will match a federal investment of $86.8 million for the capital costs of the Iowa segment of the Chicago to Iowa City service. Iowa’s share of the expected gap between revenues and operating and maintenance expense is estimated at $3 million annually. The economic analysis included in this document demonstrates the cost-effectiveness of the Iowa investments in the Chicago to Iowa City service and details the benefits that Iowa can expect from Iowa’s expenditures.
Resumo:
Since the introduction of expanded levels of intrastate service on October 30, 2006, Amtrak trains in Illinois have produced impressive gains in both ridership and ticket revenue. This success and continuing stakeholder support has given rise to a formal request from the Illinois Department of Transportation (“Ill. DOT”) to Amtrak to develop a feasibility study regarding possible service consisting of a morning and an evening train in each direction between Chicago and the Quad Cities. The area between Chicago and the Quad Cities includes many rapidly growing communities. From Chicago toward the West and South, many towns and cities have experienced double digit growth increases in population since the year 2000. Southern DuPage, Cook and Will counties have seen especially strong growth, pressuring highway infrastructure, utilities, and schools. Community development and highway congestion are readily apparent when traveling the nearly 3 hour, 175 mile route between Chicago and the Quad Cities. As information, there are only three weekday round trip bus frequencies available between Chicago and the Quad Cities. The Quad City International Airport offers a total of 10 daily scheduled round trip flights to Chicago's O'Hare International Airport via two separate carriers flying regional jets. The Quad Cities (Davenport, Moline, Rock Island, and Bettendorf) are located along the Mississippi River. Nearly 60% of its visitors are from the Chicago area. With dozens of miles of scenic riverfront, river boating, casinos, and thousands of acres of expansive public spaces, the Quad Cities area is a major draw from both Iowa and Illinois. The huge Rock Island Arsenal, one of the largest military arsenals in the country and located along the river, is transitioning to become the headquarters of the United States First Army. As will be discussed later in the report, there is only one logical rail route through the Quad Cities themselves. The Iowa Interstate Railroad operates through the Quad Cities along the river and heads west through Iowa. The Quad Cities are considering at least three potential locations for an Amtrak station. A study now underway supported by several local stakeholders will recommend a site which will then be considered, given available local and other financial support. If Amtrak service were to terminate in the Quad Cities, an overnight storage track of sufficient length along with ample parking and certain other requirements covered elsewhere in the report would be required.
Resumo:
Overview of the Passenger Service Connects Iowa City, Quad Cities and Chicago, 219.5 miles Twice‐daily service each way, 4 hours and 15 minutes travel time 246,800 passengers first year (676 per day) Project construction cost $310 million (80% federal, 14.5% Illinois, 5.4% Iowa) On‐time performance 90% or better (trains arrive within 10 minutes of schedule) Competitive passenger rail service operator selection Iowa’s annual share of operating cost support averages $3 million
Resumo:
This business plan describes the methods by which the Iowa Department of Transportation (DOT) will partner with Iowa counties and cities to fund Iowa’s share of the operating and maintenance cost for the Chicago- Iowa City passenger-rail service, an average of $3 million per year.
Resumo:
Iowa’s share of the match will come from a combination of state appropriations and local funding. In FY 11, Iowa lawmakers approved intent language to provide up to $20 million over four years to help fund Iowa’s mmitment for matching federal passenger rail funding. To date, the legislature has appropriated $10 million to be used for the match. • Illinois announced in January 2010 that it would use $45 million from its state capital plan for construction of the route.
Resumo:
The Chicago to Iowa City Intercity Passenger Rail Program (Program) is a joint undertaking of the Iowa Department of Transportation (Iowa DOT) and the Illinois Department of Transportation (Illinois DOT). The purpose of the Program is to reestablish passenger rail services from Chicago to Iowa City, independently and in concert with the MWRRI (Midwest Regional Rail Initiative). The Chicago to Iowa City Corridor is one part of the vision established by the MWRRI to expand existing and develop new regional passenger rail service to meet existing and future travel demands in the Midwest. This project will expand and create a rail transportation alternative to supplant private automobile, bus, and air travel between Chicago and Iowa City, and intermediate points, and to create new transportation opportunity and capability for people who cannot meet their transportation needs with private automobile, bus and air modes.
Resumo:
Soon after the Illinois Department of Transportation (“Ill. DOT”) requested Amtrak to conduct a feasibility study on proposed Amtrak service between Chicago and the Illinois Quad Cities, the Iowa Department of Transportation (“Iowa DOT”) asked that the study be extended to Iowa City and later to Des Moines. This report examines the feasibility of extending service to Iowa City. The completed report for the proposed Chicago – Quad Cities’ service was delivered to Ill. DOT in early January 2008. It assumes a stand-alone train operation strictly within the State of Illinois and makes no reference to extending the service into the State of Iowa. Therefore, there is no discussion about potential cost sharing allocations for capital improvements or operating losses between the two states which will become a matter of future negotiations between the two jurisdictions. That being said, this report on extending the service to Iowa City is simply an addendum to the Quad Cities report and covers such topics as additional capital infrastructure improvements that would be required in Iowa, impacts on operating expenses, revised ridership and revenue projections, and the like. With one minor exception, the recommended level of capital improvements within Illinois will still be required if the service to Iowa City is initiated. It is thus important for the readers of this report to refer to the Illinois study for detailed information on that state’s portion of the route alternatives.
Resumo:
Left-turning traffic is a major source of conflicts at intersections. Though an average of only 10% to 15% of all approach traffic turns left, these vehicles are involved in approximately 45% of all accidents. This report presents the results of research conducted to develop models which estimate approach accident rates at high speed signalized intersections. The objective of the research was to quantify the relationship between traffic and intersection characteristics, and accident potential of different left turn treatments. Geometric, turning movement counts, and traffic signal phasing data were collected at 100 intersections in Iowa using a questionnaire sent to municipalities. Not all questionnaires resulted in complete data and ultimately complete data were derived for 63 intersections providing a database of 248 approaches. Accident data for the same approaches were obtained from the Iowa Department of Transportation Accident Location and Analysis System (ALAS). Regression models were developed for two different dependent variables: 1) the ratio of the number of left turn accidents per approach to million left turning vehicles per approach, and 2) the ratio of accidents per approach to million traffic movements per approach. A number of regression models were developed for both dependent variables. One model using each dependent variable was developed for intersections with low, medium, and high left turning traffic volumes. As expected, the research indicates that protected left turn phasing has a lower accident potential than protected/permitted or permitted phasing. Left turn lanes and multiple lane approaches are beneficial for reducing accident rates, while raised medians increase the likelihood of accidents. Signals that are part of a signal system tend to have lower accident rates than isolated signals. The resulting regression models may be used to determine the likely impact of various left turn treatments on intersection accident rates. When designing an intersection approach, a traffic engineer may use the models to estimate the accident rate reduction as a result of improved lane configurations and left turn treatments. The safety benefits may then be compared to any costs associated with operational effects to the intersection (i.e., increased delay) to determine the benefits and costs of making intersection safety improvements.
Resumo:
Several recent studies have demonstrated differences in safety between different types of left-turn phasing—protected, permitted, and protected/permitted phasing. The issue in question is whether older and younger drivers are more affected by a particular type of left-turn phasing at high-speed signalized intersections and whether they are more likely to contribute to a left-turn related crash under a specific type of left-turn phasing. This study evaluated the impact of different types of left-turn phasing on older and younger drivers at high-speed signalized intersections in Iowa. High-speed signalized intersections were of interest since oncoming speeds and appropriate gaps may be more difficult to judge for older drivers and those with less experience. A total of 101 intersections from various urban locations in Iowa with at least one intersecting roadway with a posted speed limit of 45 mph or higher were evaluated. Left-turn related crashes from 2001 to 2003 were evaluated. Left-turn crash rate and severity for young drivers (14- to 24-year-old), middle-age drivers (25- to 64-year-old), and older drivers (65 years and older) were calculated. Poisson regression was used to analyze left-turn crash rates by age group and type of phasing. Overall, left-turn crash rates indicated that protected phasing is much safer than protected/permitted and permitted phasing. Protected/permitted phasing had the highest left-turn crash rates overall.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program evaluate future health impacts of exposures at the formerly utilized Chicago Milwaukee St. Paul Rail Yard located on the west side of Perry, Iowa. This site has undergone a Targeted Brownfields Assessment conducted by the Contaminated Sites Section of the IDNR. This health consultation assesses potential health risks to people from future exposure to soil and surface water within the property boundary, and any health impacts resulting from contaminated groundwater beneath the site property from an evaluation of the data collected during the Targeted Brownfields Assessment. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
Provision of left turn lanes is a major problem which lacks an objective approach. Various techniques and procedures in use have been reviewed. Traffic characteristics at typical Iowa intersections have been measured. A rational approach for inclusion of a left turn lane has been developed, based on relating the benefits to the road user to the cost of providing the added turing lane. An analysis of field data gathered under this project indicates that the use of theoretical distribution to describe vehicle headways is not applicable to rural Iowa two lane roads. As an alternate approach the mass of field data gathered were examined using multiple regression techniques to yield equations for predicting stops and delays. The benefit-cost ratio technique is recommended as the criterion for decision making.