8 resultados para Chemicals and Drugs
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.
Resumo:
Blowing snow can cause significant problems for mobility and safety during winter weather in three distinct ways. It may drift onto the road, thus requiring almost continuous plowing while the wind is blowing (which may occur when a given winter storm is over). Snow may drift onto wet pavement (perhaps caused by ice control chemicals) and dilute out the chemicals on the road, creating ice on the road. And sufficient blowing snow can cause a major deterioration in visibility on the road, a factor which has been shown to be significant in winter crashes. The problem of blowing snow can be very effectively addressed by creating a snow storage device upwind of the road that requires protection from snow drifting. Typically, these storage devices are fences. Extensive design guidance exists for the required height and placement of such fences for a given annual snowfall and given local topography. However, the design information on the placement of living snow fences is less complete. The purpose of this report is to present the results of three seasons of study on using standing corn as snow fences. In addition, the experience of using switch grass as a snow storage medium is also presented. On the basis of these experimental data, a design guide has been developed that makes use of the somewhat unique snow storage characteristics of standing corn snow fences. The results of the field tests on using standing corn showed that multiple rows of standing corn store snow rather differently than a traditional wooden snow fence. Specifically, while a traditional fence stores most of the snow downwind from the fence (and thus must be placed a significant distance upwind of the road to be protected, specifically at least 35 times the snow fence height) rows of standing corn store the majority of the snow within the rows. Results from the three winters of testing show that the standing corn snow fences can store as much snow within the rows of standing corn as a traditional fence of typical height for operation in Iowa (4 to 6 feet) can store. This finding is significant because it means that the snow fences can be placed at the edge of the farmer’s field closest to the road, and still be effective. This is typically much more convenient for the farmer and thus may mean that more farmers would be willing to participate in a program that uses standing corn than in traditional programs. ii On the basis of the experimental data, design guidance for the use of standing corn as a snow storage device in Iowa is given in the report. Specifically, it is recommended that if the fetch in a location to be protected is less than 5,000 feet, then 16 rows of standing corn should be used, at the edge of the field adjacent to the right of way. If the fetch is greater than 5,000 feet, then 24 rows of standing corn should be used. This is based on a row spacing of 22 inches. Further, it should be noted that these design recommendations are ONLY for the State of Iowa. Other states of course have different winter weather and without extensive further study, it cannot be said that these guidelines would be effective in other locations with other winter conditions.
Resumo:
The Iowa Department of Corrections faces a growing prison population expected to quickly exceed current capacities. Additionally, nine out of every ten offenders have a history of alcohol or drug problems often both. Research suggests that alcohol and drugs lead to criminal behavior, which lead offenders right back to prison creating a vicious circle and placing a financial and societal burden on the state. However, research also shows that substance abuse treatment can minimize criminal behavior, and offers a way to shut the revolving prison door. Substance abuse programming attempts to change offender thinking patterns and behavior in order to facilitate re-entry back into the community, lessen substance abuse relapse and reduce recidivism. Yet nearly 60% of offenders with identified needs are not treated, and many lacking treatment are high risk. Additionally, the percentage of offenders returning to prison varies significantly from program to program and some programs can not show they have reduced recidivism when compared to offender groups with substance abuse problems and receiving no treatment at all. All of which minimize the effect substance Abuse programming has in curbing prison population growth and reducing crime.
Resumo:
The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practice to help practitioners access the latest knowledge and implement proven techniques. Emphasizing that water is the common factor in most premature joint deterioration, this guide describes various types of joint deterioration that can occur. Some distresses are caused by improper joint detailing or construction, and others can be attributed to inadequate materials or proportioning. D cracking is a form of joint distress that results from the use of poor-quality aggregates. A particular focus in this guide is joint distress due to freeze-thaw action. Numerous factors are at play in the occurrence of this distress, including the increased use of a variety of deicing chemicals and application strategies. Finally, this guide provides recommendations for minimizing the potential for joint deterioration, along with recommendations for mitigation practices to slow or stop the progress of joint deterioration.
Resumo:
The Troxler 3241-B Asphalt Content Gauge is intended for rapidly determining the bitumen content of bituminous paving mixtures. A 300 Millicurie Americuium 241: Beryllium source emitts neutrons which are affected by the hydrogen in the mix. The affected neutrons are detected by Helium 3 detectors, counted and computed into a percentage bitumen of the asphalt mix. The current methods of determining the bitumen content of bituminous paving mixtures requires the use of potentially hazardous chemicals and several hours of testing time. When extracted aggregates are not needed, determination of the bitumen content of a paving mixture by the nuclear method may be easier, quicker and potentially safer. The objective of the project is to study the accuracy of the Troxler 3241-B Nuclear Asphalt Content Gauge in measuring the asphalt cement (AC) content of asphalt concrete mixtures produced with different asphalt cements and different aggregates.
Resumo:
Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemicals and other corrosives applied to bridge decks from penetrating and damaging substructure components of the bridge. Expansion joints are often one of the first components of a bridge deck to fail and repairing or replacing expansion joints are essential to extending the life of any bridge. In the Phase I study, the research team focused on the current means and methods of repairing and replacing bridge deck expansion joints. Research team members visited with Iowa Department of Transportation (DOT) Bridge Crew Leaders to document methods of maintaining and repairing bridge deck expansion joints. Active joint replacement projects around Iowa were observed to document the means of replacing expansion joints that were beyond repair, as well as, to identify bottlenecks in the construction process that could be modified to decrease the length of expansion joint replacement projects. After maintenance and replacement strategies had been identified, a workshop was held at the Iowa State Institute for Transportation to develop ideas to better maintain and replace expansion joints. Maintenance strategies were included in the discussion as a way to extend the useful life of a joint, thus decreasing the number of joints replaced in a year and reducing the traffic disruptions.
Resumo:
The use of chemicals is a critical part of a pro-active winter maintenance program. However, ensuring that the correct chemicals are used is a challenge. On the one hand, budgets are limited, and thus price of chemicals is a major concern. On the other, performance of chemicals, especially at lower pavement temperatures, is not always assured. Two chemicals that are used extensively by the Iowa Department of Transportation (Iowa DOT) are sodium chloride (or salt) and calcium chloride. While calcium chloride can be effective at much lower temperatures than salt, it is also considerably more expensive. Costs for a gallon of salt brine are typically in the range of $0.05 to $0.10, whereas calcium chloride brine may cost in the range of $1.00 or more per gallon. These costs are of course subject to market forces and will thus change from year to year. The idea of mixing different winter maintenance chemicals is by no means new, and in general discussions it appears that many winter maintenance personnel have from time to time mixed up a jar of chemicals and done some work around the yard to see whether or not their new mix “works.” There are many stories about the mixture turning to “mayonnaise” (or, more colorfully, to “snot”) suggesting that mixing chemicals may give rise to some problems most likely due to precipitation. Further, the question of what constitutes a mixture “working” in this context is a topic of considerable discussion. In this study, mixtures of salt brine and calcium chloride brine were examined to determine their ice melting capability and their freezing point. Using the results from these tests, a linear interpolation model of the ice melting capability of mixtures of the two brines has been developed. Using a criterion based upon the ability of the mixture to melt a certain thickness of ice or snow (expressed as a thickness of melt-water equivalent), the model was extended to develop a material cost per lane mile for the full range of possible mixtures as a function of temperature. This allowed for a comparison of the performance of the various mixtures. From the point of view of melting capacity, mixing calcium chloride brine with salt brine appears to be effective only at very low temperatures (around 0° F and below). However, the approach described herein only considers the material costs, and does not consider application costs or other aspects of the mixture performance than melting capacity. While a unit quantity of calcium chloride is considerably more expensive than a unit quantity of sodium chloride, it also melts considerably more ice. In other words, to achieve the same result, much less calcium chloride brine is required than sodium chloride brine. This is important in considering application costs, because it means that a single application vehicle (for example, a brine dispensing trailer towed behind a snowplow) can cover many more lane miles with calcium chloride brine than with salt brine before needing to refill. Calculating exactly how much could be saved in application costs requires an optimization of routes used in the application of liquids in anti-icing, which is beyond the scope of the current study. However, this may be an area that agencies wish to pursue for future investigation. In discussion with winter maintenance personnel who use mixtures of sodium chloride and calcium chloride, it is evident that one reason for this is because the mixture is much more persistent (i.e. it stays longer on the road surface) than straight salt brine. Operationally this persistence is very valuable, but at present there are not any established methods to measure the persistence of a chemical on a pavement. In conclusion, the study presents a method that allows an agency to determine the material costs of using various mixtures of salt brine and calcium chloride brine. The method is based upon the requirement of melting a certain quantity of snow or ice at the ice-pavement interface, and on how much of a chemical or of a mixture of chemicals is required to do that.
Resumo:
The Iowa Department of Public Health (IDPH), Division of Environmental Health, Health Assessment Program gives people information about harmful chemicals and organisms in their environment. Blue-green algae are microscopic organisms that are naturally present in lakes and streams. Some blue-green algae produce toxins that could pose a health risk to people and animals when they are exposed to them in large enough quantities. This fact sheet answers questions about blue-green algae.