21 resultados para Cement plants -- Equipment and supplies -- Mathematical models
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This is the Iowa Department of Transportation's Equipment and Vehicle Purchase Report for Fiscal Year 2007 as required by Iowa Code section 307.47. The report is sorted by our accounting object codes.
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2008 as required by Iowa Code section 307.47. The report is sorted by our accounting object codes. The object codes help you sort the equipment into general categories. The following list will help you understand the codes: Object Description 701 Self Propelled Vehicles 702 Road Equipment & Trailers 703 Large Office Furniture & Files 704 Shop Tools & Small Equipment 705 Engineer, Survey & Measuring Equipment 706 Copiers, Fax & Communication Equipment 707 Computers & Related Equipment
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2009 as required by Iowa Code section 307.47. The report is sorted by Iowa Department of Transportation accounting object codes.
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2009 as required by Iowa Code section 307.47. The report is sorted by Iowa Department of Transportation accounting object codes.
Resumo:
Attached is the Iowa Department of Transportation's Equipment and Vehicle Purchase Report for Fiscal Year 2010 as required by Iowa Code section 307.47.
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2011 as required by Iowa Code section 307.47. The report is sorted by accounting object codes. The object codes help sort the equipment into general categories.
Resumo:
The Equipment and Vehicle Revolving Fund report covers all equipment and vehicle purchases through the highway materials and equipment revolving fund during FY 2012.
Resumo:
The Equipment and Vehicle Revolving Fund report covers all equipment and vehicle purchases through the highway materials and equipment revolving fund during FY 2013.
Resumo:
The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.
Resumo:
The Equipment and Vehicle Revolving Fund report covers all equipment and vehicle purchases through the highway materials and equipment revolving fund during FY 2014.
Resumo:
The Equipment and Vehicle Revolving Fund report covers all equipment and vehicle purchases through the highway materials and equipment revolving fund during FY 2015.
Resumo:
The Equipment and Vehicle Revolving Fund report covers all equipment and vehicle purchases through the highway materials and equipment revolving fund during FY 2016.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.
Resumo:
The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.