8 resultados para Cellular beams

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a high wind event on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high wind events. In subsequent years, a similar system was installed on the Red Rock Reservoir Bridge to provide the same wind monitoring capabilities and notifications to the Iowa DOT. The objectives of the system development and implementation are to notify personnel when the wind speed reaches a predetermined threshold such that the bridge can be closed for the safety of the public, correlate structural response with wind-induced response, and gather historical wind data at these structures for future assessments. This report describes the two monitoring systems, their components, upgrades, functionality, and limitations, and results from one year of wind data collection at both bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following high winds on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high winds. Although measures were put into place following the 2006 event at the Saylorville Reservoir Bridge, knowledge of the performance of this bridge during high wind events was incomplete. Therefore, the Saylorville Reservoir Bridge was outfitted with an information management system to investigate the structural performance of the structure and the potential for safety risks. In subsequent years, given the similarities between the Saylorville and Red Rock Reservoir bridges, a similar system was added to the Red Rock Reservoir Bridge southeast of Des Moines. The monitoring system developed and installed on these two bridges was designed to monitor the wind speed and direction at the bridge and, via a cellular modem, send a text message to Iowa DOT staff when wind speeds meet a predetermined threshold. The original intent was that, once the text message is received, the bridge entrances would be closed until wind speeds diminish to safe levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass production of prestressed concrete beams is facilitated by the accelerated curing of the concrete. The ·method most commonly used for this purpose is steam curing at atmospheric pressure. This requires concrete temperatures as high as 150°F. during the curing period. Prestressing facilities in Iowa are located out of doors. This means that during the winter season the forms are set and the steel cables are stressed at temperatures as low as 0°F. The thermal expansion of the prestressing cables should result in a reduction of the stress which was placed in them at the lower temperature. If the stress is reduced in the cables, then the amount of prestress ultimately transferred to the concrete may be less than the amount for which the beam was designed. Research project HR-62 was undertaken to measure and explain the difference between the initial stress placed in the cables and the actual stress which is eventually transferred to the concrete. The project was assigned to the Materials Department Laboratory under the general supervision of the Testing Engineer, Mr. James W. Johnson. A small stress bed complete with steam curing facilities was set up in the laboratory, and prestressed concrete beams were fabricated under closely controlled conditions. Measurements were made to determine the initial stress in the steel and the final stress in the concrete. The results of these tests indicate that there is a general loss of prestressing force in excess of that caused by elastic shortening of the concrete. The exact amount of the loss and the identification of the factors involved could not be determined from this limited investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two composite, prestressed, steel beams, fabricated by slightly different methods, were fatigue tested to destruction. Stresses and deflections were measured at regular intervals, and the behavior of each beam as failure progressed was recorded. Residual stresses were then evaluated by testing segments of each beam. An attempt was made to assess the effects of the residual stresses on fatigue strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of lightweight aggregates in pretensioned prestressed concrete beams is becoming more advantageous as our design criteria dictate longer span concrete bridges. Bridge beams of greater lengths have been restricted from travel on many of our highways because the weight of the combined beams and transporting vehicle was excessive, making hauls of any distance prohibitive. This, along with the fact that new safety requirements necessitate the use of longer spans in grade separation structures over major highways, prompted the State of Iowa to investigate the use of lightweight aggregate bridge beams. The objective of this project is the collection of field deflection measurements for five pretensioned prestressed lightweight aggregate concrete bridge beams fabricated by conventional plant processes; also the comparison of the actual cambers and deflections of the beams with that predicted from the design assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to study the flexural fatigue strength of two prestressed steel I-beams which had previously been fabricated in connection with a jointly sponsored project under the auspices of the Iowa State Highway Commission. The beams were prestressed by deflecting them under the action of a concentrated load at the center of a simple span, then welding unstressed high strength steel plates to the top and bottom flanges to retain a predetermined amount of prestress. The beams were rolled sections of A36 steel and the plates were USS "T-1" steel. Each of the two test specimens were subjected to an identical repeated loading until a fatigue failure occurred. The loading was designed to produce stresses equivalent to those which would have occurred in a simulated bridge and amounted to 84 percent of a standard H-15 live load including impact. One of the beams sustained 2,469,100 repetitions of load to failure and the other sustained 2,756,100 cycles. Following the fatigue tests, an experimental study was made to determine the state of stress that had been retained in the prestressed steel beams. This information, upon which the calculated stresses of the test could be superimposed, provided a method of correlating the fatigue strength of the beams with the fatigue information available on the two steels involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrepancies between the designed and measured camber of precast pretensioned concrete beams (PPCBs) observed by the Iowa DOT have created challenges in the field during bridge construction, causing construction delays and additional costs. This study was undertaken to systematically identify the potential sources of discrepancies between the designed and measured camber from release to time of erection and improve the accuracy of camber estimations in order to minimize the associated problems in the field. To successfully accomplish the project objectives, engineering properties, including creep and shrinkage, of three normal concrete and four high-performance concrete mix designs were characterized. In parallel, another task focused on identifying the instantaneous camber and the variables affecting the instantaneous camber and evaluated the corresponding impact of this factor using more than 100 PPCBs. Using a combination of finite element analyses and the time-step method, the long-term camber was estimated for 66 PPCBs, with due consideration given to creep and shrinkage of concrete, changes in support location and prestress force, and the thermal effects. Utilizing the outcomes of the project, suitable long-term camber multipliers were developed that account for the time-dependent behavior, including the thermal effects. It is shown that by using the recommended practice for the camber measurements together with the proposed multipliers, the accuracy of camber prediction will be greatly improved. Consequently, it is expected that future bridge projects in Iowa can minimize construction challenges resulting from large discrepancies between the designed and actual camber of PPCBs during construction.