4 resultados para Capacity utilization rate

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the decade of the 1990s, China’s feed sector became increasingly privatized, more feed mills opened, and the scale of operation expanded. Capacity utilization remained low and multi-ministerial supervision was still prevalent, but the feed mill sector showed a positive performance overall, posting a growth rate of 11 percent per year. Profit margin over sales was within allowable rates set by the government of China at 3 to 5 percent. Financial efficiency improved, with a 20 percent quicker turnover of working capital. Average technical efficiency was 0.805, as more efficient feed mills increasingly gained production shares. This study finds evidence that the increasing privatization explains the improved performance of the commercial feed mill sector. The drivers that shaped the feed mill sector in the 1990s have changed with China’s accession to the World Trade Organization. With the new policy regime in place, the study foresees that, assuming an adequate supply of soy meal and an excess capacity in the feed mill sector, it is likely that China will allow corn imports up to the tariff rate quota (TRQ) of 7.2 mmt since the in-quota rate is very low at 1 percent. However, when the TRQ is exceeded, the import duty jumps to a prohibitive out-quota rate of 65 percent. With an import duty for meat of only 10 to 12 percent, China would have a strong incentive to import meat products directly rather than bringing in expensive corn to produce meat domestically. This would be further reinforced if structural transformation in the swine sector would narrow the cost differential between domestic and imported pork.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four classes of variables are apparent in the problem of scour around bridge piers and abutments--geometry of piers and abutments, stream-flow characteristics, sediment characteristics, and geometry of site. The laboratory investigation, from its inception, has been divided into four phases based on these classes. In each phase the variables in three of the classes are held constant and those in the pertinent class are varied. To date, the first three phases have been studied. Typical scour bole patterns related to the geometry of the pier or abutment have been found. For equilibrium conditions of scour with uniform sand, the velocity of flow and the sand size do not appear to have any measurable effects on the depth of scour. This result is especially encouraging in the search for correlation between model and prototype since it would indicate that, primarily, only the depth of flow might be involved in the scale effect. The technique of model testing has been simplified, therefore, because rate of sediment transportation does not need to be scaled. Prior to the establishment of equilibrium conditions, however, depths of scour in excess of those for equilibrium conditions have been found. A concept of active scour as an imbalance between sediment transport capacity and rate of sediment supply has been used to explain the laboratory observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of work zone field data analyzed on interstate highways in Missouri to determine the mean breakdown and queue-discharge flow rates as measures of capacity. Several days of traffic data collected at a work zone near Pacific, Missouri with a speed limit of 50 mph were analyzed in both the eastbound and westbound directions. As a result, a total of eleven breakdown events were identified using average speed profiles. The traffic flows prior to and after the onset of congestion were studied. Breakdown flow rates ranged between 1194 to 1404 vphpl, with an average of 1295 vphpl, and a mean queue discharge rate of 1072 vphpl was determined. Mean queue discharge, as used by the Highway Capacity Manual 2000 (HCM), in terms of pcphpl was found to be 1199, well below the HCM’s average capacity of 1600 pcphpl. This reduced capacity found at the site is attributable mainly to narrower lane width and higher percentage of heavy vehicles, around 25%, in the traffic stream. The difference found between mean breakdown flow (1295 vphpl) and queue-discharge flow (1072 vphpl) has been observed widely, and is due to reduced traffic flow once traffic breaks down and queues start to form. The Missouri DOT currently uses a spreadsheet for work zone planning applications that assumes the same values of breakdown and mean queue discharge flow rates. This study proposes that breakdown flow rates should be used to forecast the onset of congestion, whereas mean queue discharge flow rates should be used to estimate delays under congested conditions. Hence, it is recommended that the spreadsheet be refined accordingly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although extensive research has been conducted on urban freeway capacity estimation methods, minimal research has been carried out for rural highway sections, especially sections within work zones. This study attempted to fill that void for rural highways in Kansas, by estimating capacity of rural highway work zones in Kansas. Six work zone locations were selected for data collection and further analysis. An average of six days’ worth of field data was collected, from mid-October 2013 to late November 2013, at each of these work zone sites. Two capacity estimation methods were utilized, including the Maximum Observed 15-minute Flow Rate Method and the Platooning Method divided into 15-minute intervals. The Maximum Observed 15-minute Flow Rate Method provided an average capacity of 1469 passenger cars per hour per lane (pcphpl) with a standard deviation of 141 pcphpl, while the Platooning Method provided a maximum average capacity of 1195 pcphpl and a standard deviation of 28 pcphpl. Based on observed data and analysis carried out in this study, the suggested maximum capacity can be considered as 1500 pcphpl when designing work zones for rural highways in Kansas. This proposed standard value of rural highway work zone capacity could be utilized by engineers and planners so that they can effectively mitigate congestion at or near work zones that would have otherwise occurred due to construction/maintenance.