19 resultados para CONCENTRATED COLLOIDAL DISPERSIONS
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This paper presents a detailed report of the representative farm analysis (summarized in FAPRI Policy Working Paper #01-00). At the request of several members of the Committee on Agriculture, Nutrition, and Forestry of the U.S. Senate, we have continued to analyze the impacts of the Farmers’ Risk Management Act of 1999 (S. 1666) and the Risk Management for the 21st Century Act (S. 1580). Earlier analysis reported in FAPRI Policy Working Paper #04-99 concentrated on the aggregate net farm income and government outlay impacts. The representative farm analysis is conducted for several types of farms, including both irrigated and non-irrigated cotton farms in Tom Green County, Texas; dryland wheat farms in Morton County, North Dakota and Sumner County, Kansas; and a corn farm in Webster County, Iowa. We consider additional factors that may shed light on the differential impacts of the two plans. 1. Farm-level income impacts under alternative weather scenarios. 2. Additional indirect impacts, such as a change in ability to obtain financing. 3. Implications of within-year price shocks. Our results indicate that farmers who buy crop insurance will increase their coverage levels under S. 1580. Farmers with high yield risk find that the 65 percent coverage level maximizes expected returns, but some who feel that they obtain other benefits from higher coverage will find that the S. 1580 subsidy schedule significantly lowers the cost of obtaining the additional coverage. Farmers with lower yield risk find that the increased indemnities from additional coverage will more than offset the increase in producer premium. In addition, because S. 1580 extends its increased premium subsidy percentages to revenue insurance products, farmers will have an increased incentive to buy revenue insurance. Differences in the ancillary benefits from crop insurance under the baseline and S. 1580 would be driven by the increase in insurance participation and buy-up. Given the same levels of insurance participation and buy-up, the ancillary benefits under the two scenarios would be the same.
Resumo:
Infectious livestock disease creates externalities for proximate animal production enterprises. The distribution of production scale within a region should influence and be influenced by these disease externalities. Taking the distribution of the unit costs of stocking an animal as primitive, we show that an increase in the variance of these unit costs reduces consumer surplus. The effect on producer surplus, total surplus, and animal concentration across feedlots depends on the demand elasticity. A subsidy to smaller herds can reduce social welfare and immiserize the farm sector by increasing the extent of disease. While Nash behavior involves excessive stocking, disease effects can be such that aggregate output declines relative to first-best. Disease externalities can induce more adoption of a cost-reducing technology by larger herds so that animals become more concentrated across herds. For strategic reasons, excess overall adoption of the innovation may occur. Larger herds are also more likely to adopt biosecurity innovations, explaining why larger herds may be less diseased in equilibrium.
Resumo:
Growing Green Communities is strongly committed to improving the quality of Camp Creek and its watershed by reducing soil loss, which will benefit landowners by preserving their topsoil and improve the water quality of Camp Creek by reducing sediment loading of the creek. To accomplish the goal of reducing soil loss and improving water quality, Growing Green Communities has worked with the Iowa Department of Natural Resources to identify areas of concentrated flow paths (CFPs) within the Camp Creek Watershed using LiDAR topographic mapping technology. A goal of this project is to identify sites expected to have the greatest impact in reducing soil loss and to install Best Management Practices (BMPs) at these sites. Landowners and other project partners will work to develop the most effective BMPs for each site. After the BMPs are designed and constructed, a conservation easement will be recorded to protect the BMPs. GGC plans to record 40 acres as easements. The easements will be purchased by Growing Green Communities and donated to a qualified conservation organization for long term management and maintenance.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
In Iowa, there are currently no uniform design standards for rural and suburban subdivision development roadways. Without uniform design standards, many counties are unable to provide adequate guidance for public facilities, particularly roadways, to be constructed as part of a rural subdivision development. If a developer is not required to install appropriate public improvements or does not do so properly, significant liability and maintenance expenses can be expected, along with the potential for major project costs to correct the situation. Not having uniform design standards for rural and suburban subdivision development improvements in Iowa creates situations where there is potential for inconsistency and confusion. Differences in the way development standards are applied also create incentives or disincentives for developers to initiate subdivision platting in a particular county. With the wide range of standards or lack of standards for local roads in development areas, it is critical that some level of uniformity is created to address equity in development across jurisdictional lines. The standards must be effective in addressing the problem, but they must not be so excessive as to curtail development activities within a local jurisdiction. In order to address the concerns, cities and counties have to work together to identify where growth is going to be focused. Within that long-term growth area, the roadways should be constructed to urban standards to provide an easier transition to traditional urban facilities as the area is developed. Developments outside of the designated growth area should utilize a rural cross section since it is less likely to have concentrated urban development. The developers should be required to develop roadways that are designed for a minimum life of 40 years, and the county should accept dedication of the roadway and be responsible for its maintenance.
Resumo:
Iowa ended its third year of a moderate economic recovery as fiscal year 2012 came to a close. Though many of the fundamentals in the state’s economy reflected strength during the year, employment had not returned to its pre-recession level, and job growth remained tepid. Furthermore, there was a distinct dichotomy in where hiring occurred. Most of the state’s job growth was concentrated in the goods-producing industries of construction and manufacturing, while the service-providing industries showed little momentum except for healthcare. Within the manufacturing sector, machinery products was one of the state’s fastest-growing subsectors in 2011, accounting for the creation of several thousand higher-paying jobs. The state’s nonfarm employment advanced by 12,200 in FY 2012 led primarily by growth in manufacturing and construction, which were up 9,900 and 3,800, respectively. Healthcare was the strongest of the service-providing industries with an annual gain of 2,600 jobs, while government continued to be the biggest drag on the statewide economy. Although all three levels of government employment dropped from one year ago, state government lost the most jobs at 1,900.
Resumo:
Precast prestressed concrete panels have been used as subdecks in bridge construction in Iowa and other states. To investigate the performance of these types of composite slabs at locations adjacent to abutment and pier diaphragms in skewed bridges, a research prcject which involved surveys of design agencies and precast producers, field inspections of existing bridges, analytical studies, and experimental testing was conducted. The survey results from the design agencies and panel producers showed that standardization of precast panel construction would be desirable, that additional inspections at the precast plant and at the bridge site would be beneficial, and that some form of economical study should be undertaken to determine actual cost savings associated with composite slab construction. Three bridges in Hardin County, Iowa were inspected to observe general geometric relationships, construction details, and to note the visual condition of the bridges. Hairline cracks beneath several of the prestressing strands in many of the precast panels were observed, and a slight discoloration of the concrete was seen beneath most of the strands. Also, some rust staining was visible at isolated locations on several panels. Based on the findings of these inspections, future inspections are recommended to monitor the condition of these and other bridges constructed with precast panel subdecks. Five full-scale composite slab specimens were constructed in the Structural Engineering Laboratory at Iowa State University. One specimen modeled bridge deck conditions which are not adjacent to abutment or pier diaphragms, and the other four specimens represented the geometric conditions which occur for skewed diaphragms of 0, 15, 30, and 40 degrees. The specimens were subjected to wheel loads of service and factored level magnitudes at many locations on the slab surface and to concentrated loads which produced failure of the composite slab. The measured slab deflections and bending strains at both service and factored load levels compared reasonably well with the results predicted by simplified Finite element analyses of the specimens. To analytically evaluate the nominal strength for a composite slab specimen, yield-line and punching shear theories were applied. Yield-line limit loads were computed using the crack patterns generated during an ultimate strength test. In most cases, these analyses indicated that the failure mode was not flexural. Since the punching shear limit loads in most instances were close to the failure loads, and since the failure surfaces immediately adjacent to the wheel load footprint appeared to be a truncated prism shape, the probable failure mode for all of the specimens was punching shear. The development lengths for the prestressing strands in the rectangular and trapezoidal shaped panels was qualitatively investigated by monitoring strand slippage at the ends of selected prestressing strands. The initial strand transfer length was established experimentally by monitoring concrete strains during strand detensioning, and this length was verified analytically by a finite element analysis. Even though the computed strand embedment lengths in the panels were not sufficient to fully develop the ultimate strand stress, sufficient stab strength existed. Composite behavior for the slab specimens was evaluated by monitoring slippage between a panel and the topping slab and by computation of the difference in the flexural strains between the top of the precast panel and the underside of the topping slab at various locations. Prior to the failure of a composite slab specimen, a localized loss of composite behavior was detected. The static load strength performance of the composite slab specimens significantly exceeded the design load requirements. Even with skew angles of up to 40 degrees, the nominal strength of the slabs did not appear to be affected when the ultimate strength test load was positioned on the portion of each slab containing the trapezoidal-shaped panel. At service and factored level loads, the joint between precast panels did not appear to influence the load distribution along the length of the specimens. Based on the static load strength of the composite slab specimens, the continued use of precast panels as subdecks in bridge deck construction is recommended.
Resumo:
This report describes a project begun in January 1989 and completed December 1990, with the primary objective of obtaining sufficiently accurate horizontal and vertical control by using Global Positioning System (GPS) for highway applications. The ISU research group studied the operations of the Ashtech GPS receiver in static, pseudo-static, kinematic, and pseudo-kinematic modes. By using the Electronic Distance Measuring Instrument (EDMI) Calibration Baseline at ISU, the GPS receiver was tested for distance measurement accuracy. It was found that GPS measurements differed from the baseline distance by about 5.3 mm. Four projects were undertaken to further evaluate and improve the horizontal as well as the vertical accuracies of the GPS receiver -- (1) The Campus Project: with all points concentrated within a one-mile radius; (2) The Des Moines Project: a typical DOT project with all the points within a five-mile radius; (3) The Iowa Project: with all points within a 100-mile radius in the state of Iowa; and (4) The Mustang Project: an extension of the Iowa project, including a typical DOT project of about 10 miles within the inner 30 mile radius of the Iowa project.
Resumo:
This report describes the continuation of the development of performance measures for the Iowa Department of Transportation (DOT) Offices of Construction. Those offices are responsible for administering transportation construction projects for the Iowa DOT. Researchers worked closely with the Benchmark Steering Team which was formed during Phase I of this project and is composed of representatives of the Offices of Construction. The research team conducted a second survey of Offices of Construction personnel, interviewed numerous members of the Offices and continued to work to improve the eight key processes identified during Phase I of this research. The eight key processes include Inspection of Work, Resolution of Technical Issues, Documentation of Work Progress and Pay Quantities, Employee Training and Development, Continuous Feedback for Improved Contract Documents, Provide Safe Traffic Control, External/Public Communication, and Providing Pre-Letting Information. Three to four measurements were specified for each key process. Many of these measurements required opinion surveys of employees, contractors, and others. During Phase II, researchers concentrated on conducting surveys, interviewing respondents to improve future surveys, and facilitating Benchmark Steering Team monthly meetings. Much effort was placed on using the information collected during the first year's research to improve the effectiveness and efficiency of the Offices of Construction. The results from Process Improvement Teams that studied Traffic Control and Resolution of Technical Issues were used to improve operations.
Resumo:
The purpose of this investigation was to study the flexural fatigue strength of two prestressed steel I-beams which had previously been fabricated in connection with a jointly sponsored project under the auspices of the Iowa State Highway Commission. The beams were prestressed by deflecting them under the action of a concentrated load at the center of a simple span, then welding unstressed high strength steel plates to the top and bottom flanges to retain a predetermined amount of prestress. The beams were rolled sections of A36 steel and the plates were USS "T-1" steel. Each of the two test specimens were subjected to an identical repeated loading until a fatigue failure occurred. The loading was designed to produce stresses equivalent to those which would have occurred in a simulated bridge and amounted to 84 percent of a standard H-15 live load including impact. One of the beams sustained 2,469,100 repetitions of load to failure and the other sustained 2,756,100 cycles. Following the fatigue tests, an experimental study was made to determine the state of stress that had been retained in the prestressed steel beams. This information, upon which the calculated stresses of the test could be superimposed, provided a method of correlating the fatigue strength of the beams with the fatigue information available on the two steels involved.