23 resultados para CAMBRIDGE STRUCTURAL DATABASE
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.
Resumo:
In the past, many pier columns were deteriorating due to attack by chlorides. The chloride (from deicers) has attacked the substructures by drainage from the superstructure. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from lower level traffic. Repairs of these piers are both difficult and costly. In this project, four different sealants were applied to piers to evaluate their use in the protection of the concrete against chloride-ions. One pier was left untreated to use as a control pier with which to compare the protected piers. This project began in 1980 and was to be completed in 1985, but at that time it was determined further testing was needed to make a more conclusive evaluation.
Resumo:
• Examine current pile design and construction procedures used by the Iowa Department of Transportation (DOT). • Recommend changes and improvements to these procedures that are consistent with available pile load test data, soils information, and bridge design practice recommended by the Load and Resistance Factor Design (LRFD) approach.
Resumo:
Drilled shafts have been used in the US for more than 100 years in bridges and buildings as a deep foundation alternative. For many of these applications, the drilled shafts were designed using the Working Stress Design (WSD) approach. Even though WSD has been used successfully in the past, a move toward Load Resistance Factor Design (LRFD) for foundation applications began when the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000.The policy memorandum requires all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. This ensures compatibility between the superstructure and substructure designs, and provides a means of consistently incorporating sources of uncertainty into each load and resistance component. Regionally-calibrated LRFD resistance factors are permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy and competitiveness of drilled shafts. To achieve this goal, a database for Drilled SHAft Foundation Testing (DSHAFT) has been developed. DSHAFT is aimed at assimilating high quality drilled shaft test data from Iowa and the surrounding regions, and identifying the need for further tests in suitable soil profiles. This report introduces DSHAFT and demonstrates its features and capabilities, such as an easy-to-use storage and sharing tool for providing access to key information (e.g., soil classification details and cross-hole sonic logging reports). DSHAFT embodies a model for effective, regional LRFD calibration procedures consistent with PIle LOad Test (PILOT) database, which contains driven pile load tests accumulated from the state of Iowa. PILOT is now available for broader use at the project website: http://srg.cce.iastate.edu/lrfd/. DSHAFT, available in electronic form at http://srg.cce.iastate.edu/dshaft/, is currently comprised of 32 separate load tests provided by Illinois, Iowa, Minnesota, Missouri and Nebraska state departments of transportation and/or department of roads. In addition to serving as a manual for DSHAFT and providing a summary of the available data, this report provides a preliminary analysis of the load test data from Iowa, and will open up opportunities for others to share their data through this quality–assured process, thereby providing a platform to improve LRFD approach to drilled shafts, especially in the Midwest region.
Resumo:
Heat straightening of steel beams on bridges struck by over height trucks has become common practice in recent years in Iowa. A study of the effects of this heat straightening on the steel beams thus straightened is needed. Appropriate samples for mechanical and metallurgical tests were cut from the same rolled beam from the end which was heated and the end which was not heated and the test results were compared. The test results showed beyond doubt that the steel was being heated beyond the permitted temperature and that the impact properties are being drastically reduced by the current method of heat straightening.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
The Iowa State Highway Commission has adopted a number of rigid safety requirements that the Bureau of Public Roads has set forth as standards for road construction. One of these safety requirements is the elimination of two piers on Interstate grade separations, thus leaving two long spans. These longer spans lower the ability of prestressed concrete beams to compete economically with steel beams. In an effort to be more competitive, the prestressing companies have been studying the use of lightweight aggregate in structural concrete.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
The Iowa Department of Transportation (IDOT) received a Strategic Highway Research Program (SHRP) gyratory compactor in December 1994. Since then IDOT has been studying the ability of the compactor to analyze fundamental properties of aggregates such as shape, texture, and gradation by studying the volumetrics of the aggregate blends under a standard load using the SHRP gyratory compactor. This method of analyzing the volumetrics of aggregate blends is similar to SHRP's fine aggregate angularity procedure, which analyzes void levels in noncompacted aggregate blends, which in turn can be used to evaluate the texture or shape of aggregates, what SHRP refers to as angularity. Research is showing that by splitting the aggregate blend on the 2.36-mm (#8) sieve and analyzing the volumetrics or angularity of the separated blend, important fundamental properties can be determined. Most important is structure (the degree and location of aggregate interlock). In addition, analysis of the volumes of the coarse and fine portions can predict the voids in the mineral aggregate and the desired asphalt content. By predicting these properties, it can be determined whether the combined aggregate blend, when mixed with asphalt cement, will produce a mix with structural adequacy to carry the designed traffic load.
Resumo:
Discarded tires present major disposal and environmental problems. One method of recycling tires is to use finely ground rubber from tires in asphalt cement concrete (ACC). This process has been researched in Iowa since 1991. There are currently eight projects being researched. This project involved using crumb rubber modifier (CRM) in ACC using a dry process. This project is located on US 63 in Howard County. It involved 17 test sections. There were five test sections using 20 lb of CRM per ton, four test sections using 10 lb of CRM per ton and eight test sections using a conventional mix. Not only were different mixes used, but the overlay was also placed in various thicknesses ranging from 2 in. to 8 in. (5 cm to 20 cm). The project was completed in August 1994. The project construction went well with only minor problems. This report contains information about procedures and tests that were completed and those that will be completed. Evaluation on the project will continue for five years.
Resumo:
The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride also attacks the substructures, specifically the pier columns. They are subject to chloride attack by chemical deicers in the drainage from the bridge deck. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from the lower level traffic. In this project, a field evaluation was conducted to evaluate the effectiveness of commercially available products in preventing chloride intrusion.