13 resultados para Bonded silica
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The use of a thin bonded concrete overlay atop an older surface has been widely incorporated for pavement rehabilitation in Iowa since the early 70's. Two test sections were constructed in 1985 on county road T61 on the Monroe-Wapello County line without the use of grout as a bonding agent to determine if adequate bond could be achieved and structural capacity uncompromised. Both test sections have performed well with one section having higher bond strengths, lower roughness values, higher structural capacity, and less debonding at the joints than the other section. Overall, both ungrouted sections have performed well under substantial truck traffic with minimal surface distress. More attention should be given, however, to rectifying apparent debonding at the joints when no grout is used as a bonding agent.
Resumo:
This report is a supplement to one issued in late summer 1986 which covered construction on U.S. 71, in Buena Vista County Iowa. The work involved rehabilitation of an older 20 feet wide pavement by placing a four inch thick bonded concrete overlay monolithically with two feet of widening on each side. The work was performed on one lane at a time while construction traffic and limited public traffic used the adjacent traffic lane. When work on the first lane was complete traffic was moved onto it and rehabilitation was completed on the second lane. This report covers the condition of the rehabilitated roadway in May 1987 after the first winter. The condition is described by visual observations, core conditions, and various test results including core compressive strength, direct shear tests on cores for bond strength, profilometer results and delamtect test results.
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, the interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. Although the main factors affecting UTW performance have been identified in previous research, neither the impact that external variables have on the elements nor the element interaction have been thoroughly investigated. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. Laboratory testing and full scale field testing were planned to accomplish the research objective. Laboratory testing involved monitoring interface strains in fabricated PCC/ACC composite test beams subjected to either static or dynamic flexural loading. Variables investigated included ACC surface preparation, PCC thickness, and synthetic fiber reinforcement usage. Field testing involved monitoring PCC/ACC interface stains and temperatures, falling weight deflectometer (FWD) deflection responses, direct shear strengths, and distresses on a 7.2 mile Iowa Department of Transportation (Iowa DOT) UTW project (HR-559). The project was located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. This report documents the planning, equipment selection, and construction of the project built in 1994.
Resumo:
A four and one-half inch thick, bonded portland cement concrete (PCC) overlay and integral widening were used to rehabilitate a 4.5 mile section of Iowa route 141 from US 169 to Iowa 210 in Dallas County. There was a substantial amount of cracking in the old 20 feet wide PCC pavement. Most of the widening, which was tied to the original slab by dowel bars, was placed as a four feet wide section on one side. Coring has shown that the overlay is well bonded and testing with the Delamtect has shown less than 1% debonding. Midpanel transverse cracks in the old pavement have reflected through the overlay (as expected). Some new transverse cracking has occurred. This cracking has not caused any significant problems. In general, the overlay is performing quite well.
Resumo:
Based upon the success the Iowa Department of Transportation has had using thin bonded, low slump, dense portland cement concrete on bridge decks for rehabilitation, it was decided to pursue research in the area of bonded portland cement concrete resurfacing of pavements. Since that time, in an effort to reduce costs, research was conducted into eliminating the grouting operation. On this project a non-grouted overlay was used to modernize an existing urban street. This research project is located in the City of Oskaloosa on 11th Avenue from South M Street to South Market Street. Construction of the project went well and the non-grouted overlay has performed very well to date.
Resumo:
A research project involving 2, 3, 4, and 5 in. (5.1, 7.6, 10.2, and 12.7 cm) of bonded portland cement concrete (PCC) overlay on a 1.3 mile (2.1 km) PCC pavement was conducted in Clayton County, Iowa, during September 1977, centering on the following objectives: (1) Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense PCC mixture using standard mixes with super water reducing admixtures; (2) Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced PCC resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super water reducing admixtures; and (3) Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced PCC can be obtained with only special surface cleaning and no surface removal or grinding. The conclusions are as follows: (1) Normal mixing equipment and proportioning procedures could be used using a conventional central-mix proportioning plant. This was successful when used with super water reducing admixtures. Only minor changes need be made in procedures and timing. (2) The time has been too short since the completion of the project to determine how the new pavement will perform, however, initially it appears that the method is economical and no reason is seen at this time why the life of the pavement should not be comparable to an all new pavement. (3) The initial test results show that bond strength, regardless of which method of cleaning is used, scarifying, sand blasting or water blasting, far exceed what is considered the minimum bond strength of 200 psi (1379 kPa) except where the paint stripes were intentionally left, thus showing that the paint must be removed. (4) It appears that either cement and water grout or sand, cement and water grout may be used and still obtain the required bond.
Resumo:
A Research Project involving two, three, four and five inches of bonded Portland Cement Concrete Overlay on a 1.3 mile Portland Cement Concrete pavement was conducted in Clayton County, Iowa, during September, 1977, centering on the following objectives: 1. Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense Portland Cement Concrete mixture using standard mixes with super-water reducing admixtures; 2. Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced Portland Cement Concrete resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super-water reducing admixtures; 3. Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced Portland Cement Concrete can be obtained with only special surface cleaning and no surface removal or grinding.
Resumo:
Pavements have been overlaid with thin bonded portland cement concrete (PCC) for several years. These projects have had traffic detoured for a period of 5-10 days. These detours are unacceptable to the traveling public and result in severe criticism. The use of thin bonded fast track overlay was promoted to allow a thin bonded PCC overlay with minimal disruption of local traffic. This project demonstrated the concept of using one lane of the roadway to maintain traffic while the overlay was placed on the other and then with the rapid strength gain of the fast track concrete, the construction and local traffic is maintained on the newly placed, thin bonded overlay. The goals of this project were: 1. Traffic usage immediately after placement and finishing. 2. Reduce traffic disruption on a single lane to less than 5 hours. 3. Reduce traffic disruption on a given section of two-lane roadway to less than 2 days. 4. The procedure must be economically viable and competitive with existing alternatives. 5. Design life for new construction equivalent to or in excess of conventional pavements. 6. A 20 year minimum design life for rehabilitated pavements.
Resumo:
The Experimental Project was designated as Research Project No. HR-34, sponsored by the Iowa Highway Research Board and constructed by the Iowa Highway Commission. Construction was supervised cooperatively by Engineers of the Iowa Highway Commission and the Portland Cement Association. The objective of the experiment is to study the behavior of relatively thin portland cement concrete resurfacing courses placed with bond on old concrete pavements. The phase of the problem being studied now, involves only pavements in which the old concrete is structurally sound.
Resumo:
A field program of strain and deflection measurements was conducted by the Construction Technology Laboratories (CTL) for the Iowa Department of Transportation. The objective of the field measurement program was to obtain information on bonded concrete resurfaced pavements that can be used as a data base for verifying bonded resurfacing thickness design procedures. Data gathered during the investigation included a visual condition survey, engineering properties of the original and resurfacing concrete, load related strain and deflection measurements, and temperature related curl (deflection) measurements. Resurfacing is basically the addition of a surface layer to extend the life of an existing pavement. Portland cement concrete has been used to resurface existing pavements since about 1913.
Resumo:
The Special Investigations Section recently completed the final evaluation of the I-80 eastbound bonded overlay placed in 1979 between the Shelby and Avoca interchanges in Pottawattamie County.
Resumo:
In 1994 the Iowa Department of Transportation constructed a 7.2-mile Portland Cement Concrete overlay project in Iowa County on Iowa Highway 21. The research work was conducted in cooperation with the Department of Civil Engineering and the Federal Highway Administration under the Iowa Highway Research Board project HR-559. The project was constructed to evaluate the performance of an ultrathin concrete overlay during a 5-year period. The experiment included variables of base surface preparation, overlay depth, joint spacing, fiber reinforcement, and the sealed or non-sealed joints. The project was instrumented to measure overlay/base interface temperatures and strains. Visual distress surveys and deflection testing were also used to monitor performance. Coring and direct shear testing was accomplished 3 times during the research period. Results of the testing and monitoring are identified in the report. The experiment was very successful and the results provide an insight into construction and design needs to be considered in tailoring a portland cement concrete overlay to a performance need. The results also indicate a method to monitor bond with nondestructive methods.
Resumo:
The Iowa road system has approximately 13,000 miles of Portland Cement Concrete Pavements, many of which are reaching the stage where major rehabilitation is required. Age, greater than anticipated traffic, heavier loads and deterioration related to coarse aggregate in the original pavement are some of the reasons that these pavements have reached this level of distress. One method utilized to rehabilitate distressed or underdesigned PCC pavements is the thin bonded Portland Cement Concrete overlay. Since the introduction of thin bonded overlays on highway pavements in 1973, the concrete paving industry has made progress in reducing the construction costs of this rehabilitation technique. With the advent of the shotblast machine, surface preparation costs have decreased from over $4.00 per square yard to most recently $1.42 per square yard. Other construction costs, including placement, grouting and sawing, have also declined. With each project, knowledge and efficiency have improved.