13 resultados para Benito, Santo, ca. 480-547

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation (Iowa DOT), Nebraska Department of Roads (NDOR), and the Federal Highway Administration (FHWA) are proposing to improve the interstate system around Council Bluffs with improvements extending across the Missouri River on I-80 to east of the I-480 interchange in Omaha, Nebraska, see Figure 1-1. The study considers long-term, broad-based transportation improvements along I-80, I-29, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system1, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. These improvements, once implemented, would bring the segments of I-80 and I-29 up to current engineering standards and modernize the roadway to accommodate future traffic needs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Tier 2 Environmental Assessment (EA) presents the results of studies and analysis conducted to determine the potential impacts of proposed improvements in Segment 3 of the Council Bluffs Interstate System (CBIS) in the Council Bluffs metropolitan area. This document is tiered to the Tier 1 Draft and Final Environmental Impact Statements (EIS) that evaluated impacts of the overall CBIS Improvements Project, which includes five segments of independent utility This EA on Segment 3 of the Project is divided into the following sections: and encompasses 18 mainline miles of Interstate and 14 interchanges along Interstate 80 (I-80), Interstate 29 (I-29), and Interstate 480 (I-480).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation (Iowa DOT), Nebraska Department of Roads (NDOR), and the Federal Highway Administration (FHWA) are proposing improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 (I-80) to east of the Interstate 480 (I-480) interchange in Omaha, Nebraska (see Figure 1-1). The study considers long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system1, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. These improvements, once implemented, would bring the segments of I-80 and I-29 up to current engineering standards and modernize the roadway to accommodate future traffic needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. FHWA also approves the decisions to provide full access between West Broadway and I-29, design the I-80/I-29 overlap section as a dual-divided freeway, and locating the new I-80 Missouri River Bridge north of the existing bridge. Improvements to the interstate system, once implemented, would bring the segments of I-80 and I-29 (see Figure 1) up to current engineering standards and accommodate future traffic needs. This Record of Decision (ROD) concludes Tier 1 of the Council Bluffs Interstate System (CBIS) Improvements Project. Tier 1 included an examination of the area’s transportation needs, a study of alternatives to satisfy them, and broad consideration of potential environmental and social impacts. The Tier 1 evaluation consisted of a sufficient level of engineering and environmental detail to assist decision makers in selecting a preferred transportation strategy. During Tier 1 a Draft EIS (FHWA-IA- EIS-04-01D) was developed which was approved by FHWA, Iowa DOT, and Nebraska Department of Roads (NDOR) in November 2004 with comments accepted through March 15, 2005. The Draft EIS summarized the alternatives that were considered to address the transportation needs around Council Bluffs; identified reconstruction of all or part of the interstate, the “Construction Alternative,” as the Preferred Alternative; identified three system-level decisions that needed to be made at the Tier 1 level; and invited comment on the issues. The Final EIS (FHWA-IA- EIS-04-01F) further documented the Construction Alternative as the Preferred Alternative and identified the recommended decisions for the three system level decisions that needed to be made in Tier 1. This ROD defines the Selected Alternative determined in the Tier 1 studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives of this investigation were to measure the effects of moderate heat treatments (below the dehydroxylation temperature) on physical and chemical properties of a calcium-montmorillonite clay. Previous workers have noted the reduction in cation exchange capacity and swelling property after heating in the range 200 to 400°C, and have suggested several possible explanations, such as hysteresis effect, increased inter-layer attractions due to removal of inter-layer water, or changes in the disposition of inter-layer or layer surface ions. The liquid limits of Ca-montmorillonite were steadily decreased with increased temperature of treatment, levelling at about 450°C. The plastic limit decreased slightly up to 350°C, above which samples could no longer be rolled into threads. The gradual change is in contrast with sudden major changes noted for weight loss (maximum rates of change at l00°C and 500°C), glycol retention surface area (520°C), and d001 diffraction peak intensity (17.7 A spacing) and breadth after glycolation (530°C). Other properties showing more gradual reductions with heat treatment were amount of exchangeable calcium (without water soaking), cation exchange capacity by NH4AC method, and d001 intensity (21 A spacing) after storing at 100% r.h. one month and re-wetting with water. Previous water soaking allowed much greater release of fixed Ca++ up to 450°C. Similar results were obtained with cation exchange capacities when samples were treated with N CaCl2 solution. The 21.0 A peak intensity curve showed close similarity to the liquid limit and plastic index curves in the low temperature range, and an explanation is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most abundant clay mineral group in Iowa soils is montmorillonite, most commonly calcium-saturated (Hanway et al, 1960). The calcium montmorillonite-water system was therefore selected for detailed X-ray study. Montmorillonite is unusual among minerals in that it has an expanding lattice in the c direction. That is, upon wetting with water, the individual silicate layers separate to allow entry of water, and the mineral expands. Characteristics of this expansion are readily studied by means of X-ray diffraction: the X-ray diffraction angle gives the average layer-to-layer "d001" spacing for any given moisture condition; the sharpness of the diffraction peak is a measure of uniformity of the d001 spacing; and the intensity of the peak relates to uniformity of the d001 spacing and in addition to the electron density distribution within the repeating elements. The latter is embodied in the "structure factor".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation (DOT) evaluated the PAS I Road Survey System from PAVEDEX, Inc. of Spokane, Washington. This system uses video photograph to identify and quantify pavement cracking and patching distresses. Comparisons were made to procedures currently used in the State. Interstate highway, county roads and city streets, and two shoulder sections were evaluated. Variables included travel speeds, surface type and texture, and traffic control conditions. Repeatability and distress identification were excellent on rigid pavements. Differences in distress identification and the effect of surface textures in the flexible test sections limited the repeatability and correlation of data to that of the Iowa DOT method. Cost data indicates that PAVEDEX is capable of providing comparable results with improved accuracy at a reasonable cost, but in excess of that experienced currently by the Iowa DOT. PAVEDEX is capable of providing network level pavement condition data at highway speeds and analysis of the data to identify 1/8-inch cracks at approximately 2-3 lane miles per hour with manual evaluation. Photo-logging capability is also included in the unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.