6 resultados para BAYESIAN-ESTIMATION

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating flood frequency discharges. Multi-variable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantification. The multi-variable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantification of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantification. Median differences between manual measurements and GIS quantification of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantification indicate that use of GIS values of MCS for Region 3 substantially underestimate flood discharges. Mean and median percentage differences for 2- to 500-year recurrence-interval flood discharges ranged from 5.0 to 5.3 and 4.3 to 4.5 percent, respectively, for Region 2 and ranged from 18.3 to 27.1 and 12.3 to 17.3 percent for Region 3. The MCS curves developed from GIS quantification were adjusted by 14.8 percent for streams located in Region 2 and by 17.7 percent for streams located in Region 3. Comparisons of percentage differences between flood discharges calculated using MCS values of manual measurements and adjusted-GIS quantification for Regions 2 and 3 indicate that the flood-discharge estimates are comparable. For Region 2, mean percentage differences for 2- to 500-year recurrence-interval flood discharges ranged between 0.6 and 0.8 percent and median differences were 0.0 percent. For Region 3, mean and median differences ranged between 5.4 to 8.4 and 0.0 to 0.3 percent, respectively. A list of selected stream sites presented with each curve provides information about the sites including river miles, drainage areas, the location of U.S. Geological Survey stream flowgage stations, and the location of streams Abstract crossing hydro logic region boundaries or the Des Moines Lobe landforms region boundary. Two examples are presented for determining river-mile and MCS values, and two techniques are presented for computing flood-frequency discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many accidents involving Iowa snowplows have happened in recent years. This study investigated the influence of time of day, sex of subject, type of snowplow sign and snowplow speed on the criteria of oncoming driver reaction time and his estimate of snowplow speed. Film strips were made of a car passing a snow-Plow under various experimental conditions. These experimental movie strips were viewed in the laboratory by college student drivers who were asked to indicate their reaction time to slow down and to estimate the speed of the snowplow being passed. The generally best sign condition for the snowplow was to have a striped rear sign and a speed-proportional flashing light in addition to the standard rotating beacon on top of the truck. Several recommendations were made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although extensive research has been conducted on urban freeway capacity estimation methods, minimal research has been carried out for rural highway sections, especially sections within work zones. This study attempted to fill that void for rural highways in Kansas, by estimating capacity of rural highway work zones in Kansas. Six work zone locations were selected for data collection and further analysis. An average of six days’ worth of field data was collected, from mid-October 2013 to late November 2013, at each of these work zone sites. Two capacity estimation methods were utilized, including the Maximum Observed 15-minute Flow Rate Method and the Platooning Method divided into 15-minute intervals. The Maximum Observed 15-minute Flow Rate Method provided an average capacity of 1469 passenger cars per hour per lane (pcphpl) with a standard deviation of 141 pcphpl, while the Platooning Method provided a maximum average capacity of 1195 pcphpl and a standard deviation of 28 pcphpl. Based on observed data and analysis carried out in this study, the suggested maximum capacity can be considered as 1500 pcphpl when designing work zones for rural highways in Kansas. This proposed standard value of rural highway work zone capacity could be utilized by engineers and planners so that they can effectively mitigate congestion at or near work zones that would have otherwise occurred due to construction/maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.