14 resultados para Average Length
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Portland cement concrete is an outstanding structural material but stresses and cracks often occur in large structures due to drying shrinkage. The objective of this research was to determine the change in length due to loss of moisture from placement through complete drying of portland cement concrete. The drying shrinkage was determined for four different combinations of Iowa DOT structural concrete mix proportions and materials. The two mix proportions used were an Iowa DOT D57 (bridge deck mix proportions) and a water reduced modified C4 mix. Three 4"x 4"x 18" beams were made for each mix. After moist curing for three days, all beams were maintained in laboratory dry air and the length and weight were measured at 73°F ± 3°F. The temperature was cycled on alternate days from 73°F to 90°F through four months. From four months through six months, the temperature was cycled one day at 73°F and six days at 130°F. It took approximately six months for the concrete to reach a dry condition with these temperatures. The total drying shrinkage for the four mixes varied from .0106 in. to .0133 in. with an average of .0120 in. The rate of shrinkage was approximately .014% shrinkage per 1% moisture loss for all four mixes. The rate and total shrinkage for all four mixes was very similar and did not seem to depend on the type of coarse aggregate or the use of a retarder.
Resumo:
On-street parking has been considered problematic by engineers for many years. In fact, numerous studies have concluded that diagonal or angle parking in particular is potentially more of a safety concern than parallel or no parking at all. It is a common position of many states, including Iowa, to discourage or completely prohibit angle parking on primary road extensions in urban areas. However, with the acceptance of “context sensitive design” and traffic calming techniques, policies for on-street parking are receiving re -consideration in many agencies including the FHWA. This study was undertaken to analyze operational and safety histories in the state of Iowa where various types of on-street parking have existed for many years, concentrating in particular on smaller communities. Specifically of interest was a comparison of diagonal parking locations to other types with regard to related crash histories. If possible, it was intended to develop guidelines to assist Iowa Department of Transportation designers in the consideration of parking requirements for road improvements through small communities. In this regard, several criteria were analyzed to determine possible contribution to crash history including road width, clearance to parked vehicles, traffic volumes, community population, and length of parking area. None of these factors, with the possible exception of population, displayed a clearly definable relationship to crash history. However, when average crash rates for various parking types were compared for non-intersection crashes, differences in rates between areas with diagonal parking and those with parallel parking were almost negligible. In fact, those observed rates were less than sample locations with no parking at all. These results seem to indicate that indeed there may exist no compelling justification for blanket prohibition of angle parking along Iowa’s primary extensions in all urban areas. Rather, a case-by-case investigation with each project design of the most applicable parking type would seem appropriate in smaller communities.
Resumo:
Combined audit report on the institutions under the control of the Iowa Department of Human Services including findings and recommendations and average cost per resident/patient information for the five years ended June 30, 2006
Resumo:
Vehicle Traffic Map produced by the Iowa Department of Transportation.
Resumo:
Vehicle Traffic Map produced by the Iowa Department of Transportation.
Resumo:
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard deviation of speeds with VASL was higher. The increase in standard deviation may be due to the advisory nature of VASL. The speed limit compliance with VASL was about eight times greater than without VASL. At the congested sites, the VASL were effective in making drivers slow down gradually as they approached the work zone, reducing any sudden changes in speeds. Mobility-wise the use of VASL resulted in a decrease in average queue length, throughput, number of stops, and an increase in travel time. Several surrogate safety measures also demonstrated the benefits of VASL in congested work zones. VASL deployments in rural work zones resulted in reductions in mean speed, speed variance, and 85th percentile speeds downstream of the VASL sign. The study makes the following recommendations based on the case studies investigated: 1. The use of VASL is recommended for uncongested work zones to achieve better speed compliance and lower speeds. Greater enforcement of regulatory speed limits could help to decrease the standard deviation in speeds; 2. The use of VASL to complement the static speed limits in rural work zones is beneficial even if the VASL is only used to display the static speed limits. It leads to safer traffic conditions by encouraging traffic to slow down gradually and by reminding traffic of the reduced speed limit. A well-designed VASL algorithm, like the P5 algorithm developed in this study, can significantly improve the mobility and safety conditions in congested work zones. The use of simulation is recommended for optimizing the VASL algorithms before field deployment.
Resumo:
As the list of states adopting the HWTD continues to grow, there is a need to evaluate how results are utilized. AASHTO T 324 does not standardize the analysis and reporting of test results. Furthermore, processing and reporting of the results among manufacturers is not uniform. This is partly due to the variation among agency reporting requirements. Some include only the midpoint rut depth, while others include the average across the entire length of the wheel track. To eliminate bias in reporting, statistical analysis was performed on over 150 test runs on gyratory specimens. Measurement location was found to be a source of significant variation in the HWTD. This is likely due to the nonuniform wheel speed across the specimen, geometry of the specimen, and air void profile. Eliminating this source of bias when reporting results is feasible though is dependent upon the average rut depth at the final pass. When reporting rut depth at the final pass, it is suggested for poor performing samples to average measurement locations near the interface of the adjoining gyratory specimens. This is necessary due to the wheel lipping on the mold. For all other samples it is reasonable to only eliminate the 3 locations furthest from the gear house. For multi‐wheel units, wheel side was also found to be significant for poor and good performing samples. After eliminating the suggested measurements from the analysis, the wheel was no longer a significant source of variation.
Resumo:
Flood-plain and channel-aggradation rates were estimated at selected bridge sites in central and eastern Iowa using four aggradation-measurement methods. Aggradation rates were quantified at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of Skunk River Basin. Measurement periods used to estimate average aggradation rates ranged in length from 1 to 98 years and varied among methods and sites. A direct comparison cannot be made between aggradation rates calculated using each of the four measurement methods because of differences in time periods and aggradational processes that were measured by each method.
Resumo:
The highway departments of all fifty states were contacted to find the extent of application of integral abutment bridges, to survey the different guidelines used for analysis and design of integral abutment bridges, and to assess the performance of such bridges through the years. The variation in design assumptions and length limitations among the various states in their approach to the use of integral abutments is discussed. The problems associated with lateral displacements at the abutment, and the solutions developed by the different states for most of the ill effects of abutment movements are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure was developed and used to study piling stresses and pile-soil interaction in integral abutment bridges. The finite element idealization consists of beam-column elements with geometric and material nonlinearities for the pile and nonlinear springs for the soil. An idealized soil model (modified Ramberg-Osgood model) was introduced in this investigation to obtain the tangent stiffness of the nonlinear spring elements. Several numerical examples are presented in order to establish the reliability of the finite element model and the computer software developed. Three problems with analytical solutions were first solved and compared with theoretical solutions. A 40 ft H pile (HP 10 X 42) in six typical Iowa soils was then analyzed by first applying a horizontal displacement (to simulate bridge motion) and no rotation at the top and then applying a vertical load V incrementally until failure occurred. Based on the numerical results, the failure mechanisms were generalized to be of two types: (a) lateral type failure and (b) vertical type failure. It appears that most piles in Iowa soils (sand, soft clay and stiff clay) failed when the applied vertical load reached the ultimate soil frictional resistance (vertical type failure). In very stiff clays, however, the lateral type failure occurs before vertical type failure because the soil is sufficiently stiff to force a plastic hinge to form in the pile as the specified lateral displacement is applied. Preliminary results from this investigation showed that the vertical load-carrying capacity of H piles is not significantly affected by lateral displacements of 2 inches in soft clay, stiff clay, loose sand, medium sand and dense sand. However, in very stiff clay (average blow count of 50 from standard penetration tests), it was found that the vertical load carrying capacity of the H pile is reduced by about 50 percent for 2 inches of lateral displacement and by about 20 percent for lateral displacement of 1 inch. On the basis of the preliminary results of this investigation, the 265-feet length limitation in Iowa for integral abutment concrete bridges appears to be very conservative.
Resumo:
The emerald ash borer (EAB) is a very small but very destructive beetle. Metallic green in color, its slender body measures 1/2 inch in length and 1/8 inch wide. The average adult
Resumo:
In 2010, 16.5 percent of all fatal vehicle crashes in Iowa involved large trucks compared to the national average of 7.8 percent. Only about 16 percent of these fatalities involved the occupants of the heavy vehicles, meaning that a majority of the fatalities in fatal crashes involve non-heavy-truck occupants. These statistics demonstrate the severe nature of heavy-truck crashes and underscore the serious impact that these crashes can have on the traveling public. These statistics also indicate Iowa may have a disproportionately higher safety risk compared to the nation with respect to heavy-truck safety. Several national studies, and a few statewide studies, have investigated large-truck crashes; however, no rigorous analysis of heavy-truck crashes has been conducted for Iowa. The objective of this study was to investigate and identify the causes, locations, and other factors related to heavy-truck crashes in Iowa with the goal of reducing crashes and promoting safety. To achieve this objective, this study used the most current statewide data of heavy-truck crashes in Iowa. This study also attempted to assess crash experience with respect to length of commercial driver’s license (CDL) licensure using the most recent five years of CDL data linked to the before mentioned crash data. In addition, this study used inspection and citation data from the Iowa Department of Transportation (DOT) Motor Vehicle Division and Iowa State Patrol to investigate the relationship between enforcement activities and crash experience.
Resumo:
In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The bond strength of reinforcing bars is a complex interaction between localized deformations, chemical adhesion, and other factors. Coating of reinforcing bars, although sometimes debated, has been commonly found to be an effective way to delay the initiation of corrosion in reinforced concrete systems. For many years, the standard practice has been to coat reinforcing steel with an epoxy coating, which provides a barrier between the steel and the corrosive elements of water, air, and chloride ions. Recently, there has been an industry-led effort to use galvanizing to provide the protective barrier commonly provided by traditional epoxy coatings. However, as with any new structural product, questions exist regarding both the structural performance and corrosion resistance of the system. In the fall of 2013, Buchanan County, Iowa constructed a demonstration bridge in which the steel girders and all internal reinforcing steel were galvanized. The work completed in this project sought to understand the structural performance of galvanized reinforcing steel as compared to epoxy-coated steel and to initiate a long-term corrosion monitoring program. This work consisted of a series of controlled laboratory tests and the installation of a corrosion monitoring system that can be observed for years in the future. The results of this work indicate there is no appreciable difference between the bond strength of epoxy-coated reinforcing steel and galvanized reinforcing steel. Although some differences were observed, no notable difference in either peak load, slip, or failure mode could be identified. Additionally, a long-term monitoring system was installed in this Buchanan County bridge and, to date, no corrosion activity has been identified.
Resumo:
If adequately designed and high quality material and good construction practices are used, portland cement concrete is very durable. This is demonstrated by the oldest pavement in Iowa (second oldest in the U.S.) paved in 1904, which performed well for 70 years without resurfacing. The design thickness is an important factor in both the performance and cost of pavement. The objective of this paper is to provide a 30-year performance evaluation of a pavement constructed to determine the required design thickness for low volume secondary roadways. In 1951 Greene County and the Iowa Highway Research Board of the Iowa Department of Transportation initiated a four-mile (6.4 km) demonstration project to evaluate thicknesses ranging from 4-1/2" (11.4 cm) to 6" (15.2 cm). The project, consisting of 10 research sections, was formed pavement placed on a gravel roadbed with very little preparation except for redistribution of the loose aggregate. Eight sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29' 7" (9.02 m) intervals were used in two 4-1/2" (11.4 cm) thick sections. The only air entrained section was non-reinforced. The pavement performed well over its 30-year life carrying a light volume of traffic and did not require major maintenance. There was substantial cracking with average slab length varying directly with thickness. The 4-1/2" (11.4 cm) thick non-air entrained, mesh-reinforced pavement with contraction joints has performed the best.
Resumo:
Integral abutment bridges are constructed without an expansion joint in the superstructure of the bridge; therefore, the bridge girders, deck, abutment diaphragms, and abutments are monolithically constructed. The abutment piles in an integral abutment bridge are vertically orientated, and they are embedded into the pile cap. When this type of a bridge experiences thermal expansion or contraction, horizontal displacements are induced at the top of the abutment piles. The flexibility of the abutment piles eliminates the need to provide an expansion joint at the inside face to the abutments: Integral abutment bridge construction has been used in Iowa and other states for many years. This research is evaluating the performance of integral abutment bridges by investigating thermally induced displacements, strains, and temperatures in two Iowa bridges. Each bridge has a skewed alignment, contains five prestressed concrete girders that support a 30-ft wide roadway for three spans, and involves a water crossing. The bridges will be monitored for about two years. For each bridge, an instrumentation package includes measurement devices and hardware and software support systems. The measurement devices are displacement transducers, strain gages, and thermocouples. The hardware and software systems include a data-logger; multiplexers; directline telephone service and computer terminal modem; direct-line electrical power; lap-top computer; and an assortment of computer programs for monitoring, transmitting, and management of the data. Instrumentation has been installed on a bridge located in Guthrie County, and similar instrumentation is currently being installed on a bridge located in Story County. Preliminary test results for the bridge located in Guthrie County have revealed that temperature changes of the bridge deck and girders induce both longitudinal and transverse displacements of the abutments and significant flexural strains in the abutment piles. For an average temperature range of 73° F for the superstructure concrete in the bridge located in Guthrie County, the change in the bridge length was about 1 118 in. and the maximum, strong-axis, flexural-strain range for one of the abutment piles was about 400 micro-strains, which corresponds to a stress range of about 11,600 psi.