50 resultados para Autonomous Surface Vehicles
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Six subject areas prompted the broad field of inquiry of this mission-oriented dust control and surface improvement project for unpaved roads: • DUST--Hundreds of thousands of tons of dust are created annually by vehicles on Iowa's 70,000 miles of unpaved roads and streets. Such dust is often regarded as a nuisance by Iowa's highway engineers. • REGULATIONS--Establishment of "fugitive dust" regulations by the Iowa DEQ in 1971 has created debates, conferences, legal opinions, financial responsibilities, and limited compromises regarding "reasonable precaution" and "ordinary travel," both terms being undefined judgment factors. • THE PUBLIC--Increased awareness by the public that regulations regarding dust do in fact exist creates a discord of telephone calls, petitions, and increasing numbers of legal citations. Both engineers and politicians are frustrated into allowing either the courts or regulatory agencies to resolve what is basically a professional engineering responsibility. • COST--Economics seldom appear as a tenet of regulatory strategies, and in the case of "fugitive dust," four-way struggles often occur between the highway professions, political bodies, regulatory agencies, and the general public as to who is responsible, what can be done, how much it will cost, or why it wasn't done yesterday. • CONFUSION--The engineer lacks authority, and guidelines and specifications to design and construct a low-cost surf acing system are nebulous, i.e., construct something between the present crushed stone/gravel surface and a high-type pavement. • SOLUTION--The engineer must demonstrate that dust control and surface improvement may be engineered at a reasonable cost to the public, so that a higher degree of regulatory responsibility can be vested in engineering solutions.
Resumo:
Federal and state policy makers increasingly emphasize the need to reduce highway crash rates. This emphasis is demonstrated in Iowa’s recently released draft Iowa Strategic Highway Safety Plan and by the U.S. Department of Transportation’s placement of “improved transportation safety” at the top of its list of strategic goals. Thus, finding improved methods to enhance highway safety has become a top priority at highway agencies. The objective of this project is to develop tools and procedures by which Iowa engineers can identify potentially hazardous roadway locations and designs, and to demonstrate the utility of these tools by developing candidate lists of high crash locations in the State. An initial task, building an integrated database to facilitate the tools and procedures, is an important product, in and of itself. Accordingly, the Iowa Department of Transportation (Iowa DOT) Geographic Information Management System (GIMS) and Geographic Information System Accident Analysis and Location System (GIS-ALAS) databases were integrated with available digital imagery. (The GIMS database contains roadway characteristics, e.g., lane width, surface and shoulder type, and traffic volume, for all public roadways. GIS-ALAS records include data, e.g., vehicles, drivers, roadway conditions, and the crash severity, for crashes occurring on public roadways during then past 10 years.)
Resumo:
The purpose of this research project is to study current practices in enhancing visibility and protection of highway maintenance vehicles involved in moving operations such as snow removal and shoulder operations, crack sealing, and pothole patching. The results will enable the maintenance staff to adequately assess the applicability and impact of each strategy to their use and budget. The report’s literature review chapter examines the use of maintenance vehicle warning lights, retroreflective tapes, shadow vehicles and truck-mounted attenuators, and advanced vehicle control systems, as well as other practices to improve visibility for both snowplow operators and vehicles. The chapter concludes that the Manual on Uniform Traffic Control Devices does not specify what color or kind of warning lights to use. Thus, a wide variety of lights are being used on maintenance vehicles. The study of the relevant literatures also suggests that there are no clear guidelines for moving work zones at this time. Two types of surveys were conducted to determine current practices to improve visibility and safety in moving work zones across the country and in the state of Iowa. In the first survey of state departments of transportation, most indicated using amber warning lights on their maintenance vehicles. Almost all the responding states indicated using some form of reflective material on their vehicles to make them more visible. Most participating states indicated that the color of their vehicles is orange. Most states indicated using more warning lights on snow removal vehicles than their other maintenance vehicles. All responding state agencies indicated using shadow vehicles and/or truck-mounted attenuators during their moving operations. In the second survey of Iowa counties, most indicated using very similar traffic control and warning devices during their granular road maintenance and snow removal operations. Mounting warning signs and rotating or strobe lights on the rear of maintenance vehicles is common for Iowa counties. The most common warning devices used during the counties’ snow removal operations are reflective tapes, warning flags, strobe lights, and auxiliary headlamps.
Resumo:
One of the most important issues in portland cement concrete pavement research today is surface characteristics. The issue is one of balancing surface texture construction with the need for durability, skid resistance, and noise reduction. The National Concrete Pavement Technology Center at Iowa State University, in conjunction with the Federal Highway Administration, American Concrete Pavement Association, International Grinding and Grooving Association, Iowa Highway Research Board, and other states, have entered into a three-part National Surface Characteristics Program to resolve the balancing problem. As a portion of Part 2, this report documents the construction of 18 separate pavement surfaces for use in the first level of testing for the national project. It identifies the testing to be done and the limitations observed in the construction process. The results of the actual tests will be included in the subsequent national study reports.
Resumo:
Surface characteristics represent a critical issue facing pavement owners and the concrete paving industry. The traveling public has come to expect smoother, quieter, and better drained pavements, all without compromising safety. The overall surface characteristics issues is extremely complex since all pavement surface characteristics properties, including texture, noise, friction, splash/spray, rolling resistance, reflectivity/illuminance, and smoothness, are complexly related. The following needs and gaps related to achieving desired pavement surface characteristics need to be addressed: determined how changes in one surface characteristic affect, either beneficially or detrimentally, other characteristics of the pavement, determine the long-term surface and acoustic durability of different textures, and develop, evaluate, and standardize new data collection and analysis tools. It is clear that an overall strategic and coordinated research approach to the problem must be developed and pursued to address these needs and gaps.
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.
Resumo:
House File 2754 requires the Iowa Department of Transportation to deliver a report to the Governor and legislative service agency regarding flexible fueled vehicles registered in Iowa. The report shall include: 1. The number of flexible fuel vehicles according to year of manufacture; 2. the number of passenger vehicles according to year of manufacture; and 3. the number of light pickup trucks according to year of manufacture.
Resumo:
House File 2754 requires by Feb. 1 of each year the Iowa Department of Transportation shall deliver a report to the governor and legislative services agency regarding flexible fuel vehicles registered in Iowa. This report reflects the flexible fuel vehicles registered in Iowa as of Jan. 27, 2009.
Resumo:
House File 2754 requires by February 1 of each year the Iowa Department of Transportation shall deliver a report to the governor and legislative services agency regarding flexible fuel vehicles registered in Iowa.
Resumo:
LEGISLATIVE STUDY – The 83rd General Assembly of the Iowa Legislature, in Senate File 2273, directed the Iowa Department of Transportation (DOT) to conduct a study of how to implement a uniform statewide system to allow for electronic transactions for the registration and titling of motor vehicles. PARTICIPANTS IN STUDY – As directed by Senate File 2273, the DOT formed a working group to conduct the study that included representatives from the Consumer Protection Division of the Office of the Attorney General, the Department of Public Safety, the Department of Revenue, the Iowa State County Treasurer’s Association, the Iowa Automobile Dealers Association, and the Iowa Independent Automobile Dealers Association. CONDUCT OF THE STUDY – The working group met eight times between June 17, 2010, and October 1, 2010. The group discussed the costs and benefits of electronic titling from the perspectives of new and used motor vehicle dealers, county treasurers, the DOT, lending institutions, consumers and consumer protection, and law enforcement. Security concerns, legislative implications, and implementation timelines were also considered. In the course of the meetings the group: 1. Reviewed the specific goals of S.F. 2273, and viewed a demonstration of Iowa’s current vehicle registration and titling system so participants that were not users of the system could gain an understanding of its current functionality and capabilities. 2. Reviewed the results of a survey of county treasurers conducted by the DOT to determine the extent to which county treasurers had processing backlogs and the extent to which county treasurers limited the number of dealer registration and titling transactions that they would process in a single day and while the dealer waited. Only eight reported placing a limit on the number of dealer transactions that would be processed while the dealer waited (with the number ranging from one to four), and only 11 reported a backlog in processing registration and titling transactions as of June 11, 2010, with most backlogs being reported in the range of one to three days. 3. Conducted conference calls with representatives of the American Association of Motor Vehicle Administrators (AAMVA) and representatives of three states -- Kansas, which has an electronic lien and titling (ELT) program, and Wisconsin and Florida, each of which have both an ELT program and an electronic registration and titling (ERT) program – to assess current and best practices for electronic transactions. In addition, the DOT (through AAMVA) submitted a survey to all U.S. jurisdictions to determine how, if at all, other states implemented electronic transactions for the registration and titling of motor vehicles. Twenty-eight states responded to the survey; of the 28 states that responded, only 13 allowed liens to be added or released electronically, and only five indicated allowing applications for registration and titling to be submitted electronically. DOT staff also heard a presentation from South Dakota on its ERT system at an AAMVA regional meeting. ELT information that emerged suggests a multi-vendor approach, in which vendors that meet state specifications for participation are authorized to interface with the state’s system to serve as a portal between lenders and the state system, will facilitate electronic lien releases and additions by offering lenders more choices and the opportunity to use the same vendor in multiple states. The ERT information that emerged indicates a multi-interface approach that offers an interface with existing dealer management software (DMS) systems and through a separate internet site will facilitate ERT by offering access that meets a variety of business needs and models. In both instances, information that emerged indicates that, in the long-term, adoption rates are positively affected by making participation above a certain minimum threshold mandatory. 4. To assess and compare functions or services that might be offered by or through a vendor, the group heard presentations from vendors that offer products or services that facilitate some aspect of ELT or ERT. 5. To assess the concerns, needs and interest of Iowa motor vehicle dealers, the group surveyed dealers to assess registration and titling difficulties experienced by dealers, the types of DMS systems (if any) used by dealers, and the dealers’ interest and preference in using an electronic interface to submit applications for registration and titling. Overall, 40% of the dealers that responded indicated interest and 57% indicated no interest, but interest was pronounced among new car dealers (75% were interested) and dealers with a high number of monthly transactions (85% of dealers averaging more than 50 sales per month were interested). The majority of dealers responding to the dealer survey ranked delays in processing and problems with daily limits on transaction as ―minor difficulty or ―no difficulty. RECOMMENDATIONS -- At the conclusion of the meetings, the working group discussed possible approaches for implementation of electronic transactions in Iowa and reached a consensus that a phased implementation of electronic titling that addressed first electronic lien and title transactions (ELT) and electronic fund transfers (EFT), and then electronic applications for registration and titling (ERT) is recommended. The recommendation of a phased implementation is based upon recognition that aspects of ELT and EFT are foundational to ERT, and that ELT and EFT solutions are more readily and easily attained than the ERT solution, which will take longer and be somewhat more difficult to develop and will require federal approval of an electronic odometer statement to fully implement. ELT – A multi-vendor approach is proposed for ELT. No direct costs to the state, counties, consumers, or dealers are anticipated under this approach. The vendor charges participating lenders user or transaction fees for the service, and it appears the lenders typically absorb those costs due to the savings offered by ELT. Existing staff can complete the programming necessary to interface the state system with vendors’ systems. The estimated time to implement ELT is six to nine months. Mandatory participation is not recommended initially, but should be considered after ELT has been implemented and a suitable number of vendors have enrolled to provide a fair assessment of participation rates and opportunities. EFT – A previous attempt to implement ELT and EFT was terminated due to concern that it would negatively impact county revenues by reducing interest income earned on state funds collected by the county and held until the monthly transfer to the state. To avoid that problem in this implementation, the EFT solution should remain revenue neutral to the counties, by allowing fees submitted by EFT to be immediately directed to the proper county account. Because ARTS was designed and has the capacity to accommodate EFT, a vendor is not needed to implement EFT. The estimated time to implement EFT is six to nine months. It is expected that EFT development will overlap ELT development. ERT – ERT itself must be developed in phases. It will not be possible to quickly implement a fully functioning, paperless ERT system, because federal law requires that transfer of title be accompanied by a written odometer statement unless approval for an alternate electronic statement is granted by the National Highway Traffic Safety Administration (NHTSA). It is expected that it will take as much as a year or more to obtain NHTSA approval, and that NHTSA approval will require design of a system that requires the seller to electronically confirm the seller’s identity, make the required disclosure to the buyer, and then transfer the disclosure to the buyer, who must also electronically confirm the buyer’s identity and electronically review and accept the disclosure to complete and submit the transaction. Given the time that it will take to develop and gain approval for this solution, initial ERT implementation will focus on completing and submitting applications and issuing registration applied for cards electronically, with the understanding that this process will still require submission of paper documents until an electronic odometer solution is developed. Because continued submission of paper documents undermines the efficiencies sought, ―full‖ ERT – that is, all documents necessary for registration and titling should be capable of approval and/or acceptance by all parties, and should be capable of submission without transmittal or delivery of duplicate paper documents .– should remain the ultimate goal. ERT is not recommended as a means to eliminate review and approval of registration and titling transactions by the county treasurers, or to place registration and titling approval in the hands of the dealers, as county treasurers perform an important role in deterring fraud and promoting accuracy by determining the genuineness and regularity of each application. Authorizing dealers to act as registration agents that approve registration and title applications, issue registration receipts, and maintain and deliver permanent metal license plates is not recommended. Although distribution of permanent plates by dealers is not recommended, it is recommended that dealers participating in ERT generate and print registration applied for cards electronically. Unlike the manually-issued cards currently in use, cards issued in this fashion may be queried by law enforcement and are less susceptible to misuse by customers and dealers. The estimated time to implement the electronic application and registration applied for cards is 12 to 18 months, to begin after ELT and EFT have been implemented. It is recommended that focus during this time be on facilitating transfers through motor vehicle dealers, with initial deployment focused on higher-volume dealers that use DMS systems. In the long term an internet option for access to ERT must also be developed and maintained to allow participation for lower-volume dealers that do not use a DMS system. This option will also lay the ground work for an ERT option for sales between private individuals. Mandatory participation in Iowa is not recommended initially. As with ELT, it is recommended that mandatory participation be considered after at least an initial phase of ERT has been implemented and a suitable number of dealers have enrolled to provide a fair assessment of participation rates and opportunities. The use of vendors to facilitate ERT is not initially proposed because 1) DOT IT support staff is capable of developing a system that will interact with DMS systems and will still have to develop a dealer and public interface regardless of whether a vendor acts as intermediary between the DMS systems, and 2) there is concern that the cost of the vendor-based system, which is funded by transaction-based payments from the dealer to the vendor, will be passed to the consumer in the form of additional documentation or conveyance fees. However, the DOT recommends flexibility on this point, as development and pilot of the system may indicate that a multi-vendor approach similar to that recommended for ELT may increase the adoption rate by larger dealers and may ultimately decrease the user management to be exercised by DOT staff. If vendors are used in the process, additional legislation or administrative rules may be needed to control the fees that may be passed to the consumer. No direct cost to the DOT or county treasurers is expected, as the DOT expects that it may complete necessary programming with existing staff. Use of vendors to facilitate ERT transactions by dealers using DMS systems would result in transaction fees that may ultimately be passed to consumers. LEGISLATION – As a result of the changes implemented in 2004 under Senate File 2070, the only changes to Iowa statutes proposed are to section 321.69 of the Iowa Code, ―Damage disclosure statement,and section 321.71, ―Odometer requirements.‖ In each instance, authority to execute these statements by electronic means would be clarified by authorizing language similar to that used in section 321.20, subsections ―2‖ and ―3,‖ which allows for electronic applications and directs the department to ―adopt rules on the method for providing signatures for applications made by electronic means.‖ In these sections, the authorizing language might read as follows: Notwithstanding contrary provisions of this section, the department may develop and implement a program to allow for any statement required by this section to be made electronically. The department shall adopt rules on the method for providing signatures for statements made by electronic means. Some changes to DOT administrative rules will be useful but only to enable changes to work processes that would be desirable in the long term. Examples of long term work processes that would be enabled by rule changes include allowing for signatures created through electronic means and electronic odometer certifications. The DOT rules, as currently written, do not hinder the ability to proceed with ELT, EFT, and ERT.
Resumo:
Public roads by surface type in Iowa by Iowa Department of Transportation.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type 2001 – 2009, July 6, 2010
Resumo:
Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type produced by the Iowa Department of Transportation.
Resumo:
The quality and availability of aggregate for pc concrete stone varies across Iowa. Southwest Iowa is one area of the state that is short of quality aggregates. The concrete stone generally available in the area is limestone from the Argentine or Winterset ledges with an overburden of up to 150 feet. This concrete stone is classified as Class 1 durability and is susceptible to 'ID"-cracking. In addition, the general engineering soil classification rates the soils of southwest Iowa as having the poorest subgrade bearing characteristics in the state. 1 The combination of poor soils and low quality aggregate has contributed to premature deterioration of many miles of portland cement concrete pavement. Research project HR-209 was initiated in 1979 to explore alternative construction methods that may produce better pavements for southwest Iowa.
Resumo:
Research was undertaken to define an appropriate level of use of traffic control devices on rural secondary roads that carry very low traffic volumes. The goal of this research was to improve the safety and efficiency of travel on the rural secondary road system. This goal was to be accomplished by providing County Engineers with guidance concerning the cost-effective use of traffic control devices on very low volume rural roads. A further objective was to define the range of traffic volumes on the roads for which the recommendations would be appropriate. Little previous research has been directed toward roads that carry very low traffic volumes. Consequently, the factual input for this research was developed by conducting an inventory of the signs and markings actually in use on 2,069 miles of rural road in Iowa. Most of these roads carried 15 or fewer vehicles per day. Additional input was provided by a survey of the opinions of County Engineers and Supervisors in Iowa. Data from both the inventory and the opinion survey indicated a considerable lack of uniformity in the application of signs on very low volume rural roads. The number of warning signs installed varied from 0.24 per mile to 3.85 per mile in the 21 counties in which the inventory was carried out. The use of specific signs not only varied quite widely among counties but also indicated a lack of uniform application within counties. County officials generally favored varying the elaborateness of signing depending upon the type of surface and the volume of traffic on different roads. Less elaborate signing would be installed on an unpaved road than on a paved road. A concensus opinion was that roads carrying fewer than 25 vehicles per day should have fewer signs than roads carrying higher volumes. Although roads carrying 0 to 24 vehicles per day constituted over 24% of the total rural secondary system, they carried less than 3% of the total travel on that system. Virtually all of these roads are classified as area service roads and would thus be expected to carry only short trips primarily by local motorists. Consequently, it was concluded that the need for warning signs rarely can be demonstrated on unpaved rural roads with traffic volumes of fewer than 25 vehicles per day. It is recommended that each county designate a portion of its roads as an Area Service Level B system. All road segments with very low traffic volumes should be considered for inclusion in this system. Roads included in this system may receive a lesser level of maintenance and a reduced level of signing. The county is also afforded protection from liability arising from accidents occurring on roads designated as part of an Area Service Level B system. A uniform absence of warning signs on roads of this nature is not expected to have any discernible effect on the safety or quality of service on these very low volume roads. The resources conserved may be expended more effectively to upgrade maintenance and traffic control on roads carrying higher volumes where the beneficial effect on highway safety and service will be much more consequential.