8 resultados para Astrographic catalog and chart
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
The state Senator and state Representative from each district are elected to represent constituent interests when making the laws of Iowa. Citizens can take part in the decisions made by those elected officials. For locating constituent Senators and Representatives, or to learn more about the Iowa Legislature, contact the Legislative Information Office (LIO). This document includes a organizational chart of the General Assembly.
Resumo:
IDED’s efforts to support the “Green” initiative includes reducing the number of communication pieces we print and mail. To support our efforts, register at http://www.iowalifechanging.com/subscriptions/login.asp to receive notice of future issues of the Available Building Catalog as they become available online.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
The overall system is designed to permit automatic collection of delamination field data for bridge decks. In addition to measuring and recording the data in the field, the system provides for transferring the recorded data to a personal computer for processing and plotting. This permits rapid turnaround from data collection to a finished plot of the results in a fraction of the time previously required for manual analysis of the analog data captured on a strip chart recorder. In normal operation the Delamtect provides an analog voltage for each of two channels which is proportional to the extent of any delamination. These voltages are recorded on a strip chart for later visual analysis. An event marker voltage, produced by a momentary push button on the handle, is also provided by the Delamtect and recorded on a third channel of the analog recorder.
Resumo:
The State Forest Nursery welcomes the opportunity to help you with your tree planting needs. Our goal is to provide low cost, native seedlings in order to help make your tree planting successful and affordable. We strive to produce the best stock in the industry, and our staff will do everything they can to help you achieve your planting goals. We want your tree planting to be successful, so please let us know how we can help! You can contact us www.iowatreeplanting.com By planting trees today you will leave a legacy for your children and grandchildren, as well as a legacy for your home state, its people and its habitat. Let us help you leave your mark on the state you love- your children and grandchildren will thank you!
Resumo:
Iowa and Some Iowans is a classed bibliography of materials by Iowans or about Iowa. It is in the same order in which the average school or public library or media center would shelve materials, that is, nonfiction in order using the Dewey Decimal System, and fiction in alphabetical order by author. Biographies and autobiographies are generally entered 920's. A few may be entered under the subject with which the biography is related. An attempt is made to provide most of the information needed to catalog each title including the Iowa-related subject headings, and the joint authors, artists and series titles pertinent to the bibliography. These items are included at the bottom of the entry as numbered “tracings” and are a record of the items included in the indexes. The author or creator of a work and the title of the work are indexed also. Fourth Edition 1996. NOTE: this digital version has some pagination discrepancies in the transition from chapter to chapter, but all content is included.
Resumo:
Capacity is affected by construction type and its intensity on adjacent open traffic lanes. The effect on capacity is a function of vehicles moving in and out of the closed lanes of the work zone, and the presence of heavy construction vehicles. Construction activity and its intensity, however, are not commonly considered in estimating capacity of a highway lane. The main purpose of this project was to attempt to quantify the effects of construction type and intensity (e.g. maintenance, rehabilitation, reconstruction, and milling) on work zone capacity. The objective of this project is to quantify the effects of construction type and its intensity on work zone capacity and to develop guidelines for MoDOT to estimate the specific operation type and intensity that will improve the traffic flow by reducing the traffic flow and queue length commonly associated with work zones. Despite the effort put into field data collection, the data collected did not show a full speed-flow chart therefore extracting a reliable capacity value was difficult. A statistical comparison between the capacity values found in this study using either methodologies indicates that there is an effect of construction activity on the values work zone capacity. It was found that the heavy construction activity reduces the capacity. It is very beneficial to conduct similar studies on the capacity of work zone with different lane closure barriers, which is also directly related to the type of work zone being short-term or long-term work zones. Also, the effect of different geometric and environmental characteristics of the roadway should be considered in future studies.