15 resultados para Art Built In
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Information brochure on Cedar Rock, Lowell Walter House, designed by Frank Lloyd Wright.
Resumo:
Information brochure on the American Gothic House made famous by Iowan Grant Wood
Resumo:
Information brochure on the Abbie Gardner Cabin, one of the sites of the "Spirit Lake Massacre"
Resumo:
Information brochure on the State of Iowa Historical Building
Resumo:
Information brochure on the Matthew Edel blacksmith shop
Resumo:
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested; these projects allow researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field-testing were planned in order to accomplish the research objective. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field-testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, equipment selection, construction, field changes, and construction concerns of the project built in 2002. The data from this research could be combined with historical data to develop a design specification for the construction of thin, unbonded overlays.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Resumo:
Iowa's first sprinkle treatment in 1974 was applied to a short section of old US 30 west of Ames. A roll type seal coat spreader was used to apply several types of sprinkle aggregates. The following year a spinner type tailgate spreader was used for sprinkle application of an Iowa 7 project in Webster County. Uniform spreading and tire marks were problems in these early projects. A special spinner spreader was built in 1976 and mounted on a truck specially equipped with smooth tires. This special unit was tested in early 1977 on a project that had been scheduled for 1976. Spinner type spreaders proved unacceptable due to non-uniformity of spreading.
Resumo:
The Capitol grounds have been evolving through planned and unplanned actions for more than 150 years. The 1857 Constitutio established Des Moines as the capital. The commissioners appointed to choose a site decided on land donated by Wilson Alexander Scott and Harrison Lyon. Located on the east side of the Des Moines River, on a gently rising hill, the site for the Iowa State Capitol began with fewer than 10 acres. The Old Brick Capitol was built in the center of that 10-acre plot, and the area to the north was used as a public park until work began on the present day Capitol. In 1884, the two-year process of moving from the Old Brick Capitol to the new Capitol began. The state commissioned John Weidenman to design the first formal decoration of the grounds. Weidenman’s plans for the west approach to the Capitol included planting statues, and walkways. The State held some additional land but not necessarily land adjacent to the Capitol. In 1909, legislation was passed, and in 1913, the Thirty-Fifth General Assembly enacted controversial legislation to acquire additional land. A commission was formed to locate a purposed monument honoring the long-serving U.S. Senator William B. Allison. E.L. Masqueray was hired as the architect expert focusing on the selection of a proper site for the proposed Allison Memorial. Masqueray’s plan detailed the placement of buildings and potential monuments. Growth of the Capitol Complex, as known today, began.
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, the interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. Although the main factors affecting UTW performance have been identified in previous research, neither the impact that external variables have on the elements nor the element interaction have been thoroughly investigated. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. Laboratory testing and full scale field testing were planned to accomplish the research objective. Laboratory testing involved monitoring interface strains in fabricated PCC/ACC composite test beams subjected to either static or dynamic flexural loading. Variables investigated included ACC surface preparation, PCC thickness, and synthetic fiber reinforcement usage. Field testing involved monitoring PCC/ACC interface stains and temperatures, falling weight deflectometer (FWD) deflection responses, direct shear strengths, and distresses on a 7.2 mile Iowa Department of Transportation (Iowa DOT) UTW project (HR-559). The project was located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. This report documents the planning, equipment selection, and construction of the project built in 1994.
Resumo:
The load ratings for these Standard bridges were calculated in compliance with the 1978 AASHTO Manual for Maintenance Inspection of Bridges, using the appropriate allowable stresses for the materials specified by the Standard plans. Distribution of loads is in compliance with the Manual unless otherwise noted. Except for truss spans, all bridges with roadway widths of 18 ft. or less were rated for one lane of traffic. All 18 ft. roadway truss bridges were rated for both one and two lanes of traffic. All bridges with roadway widths exceeding 18 ft. were rated for two lanes of traffic. If the posting rating for two lane bridges was less than legal, then the bridges were rated for traffic restricted to one lane, or to one lane centered in the roadway, as noted on the summary sheet. The ratings are applicable to bridges built in accordance with the standard plans and which exhibit no significant deterioration or damage to the structural members, and which have no added wearing surface material in excess of that noted on the summary sheets and used in the calculations. The inventory and operating ratings were based upon the standard AASHTO HS20-44 loading. The legal load ratings were based upon the three typical Iowa legal vehicles shown on page 5. The legal load ratings were based upon the maximum allowable Operating Rating stresses specified in the Manual. Refer to notations on the summary sheets for additional qualifications on the load ratings for specific standard bridge series. Load ratings for standard bridges with wood floors must be based upon existing conditions of attachment of the wood flooring to the top flanges of longitudinal steel stringers. The ratings must be reevaluated if the existing lateral support conditions are not in accordance with conditions used for the rating and noted on the summary sheets. Details of most of the standard bridges are included in the three books of "Iowa State Highway Commission, Bridge Standards," issued in June, 1972. Copies of plans for those standard bridges that were rated, and that are not included in the original books of standard plans, are being furnished under separate cover with these rating summaries.
Resumo:
Much of the nation's rural road system is deteriorating. Many of the roads were built in the 1880s and 1890s with the most recent upgrading done in the 1940s and 1950s. Consequently, many roads and bridges do not have the capacity for the increased loads, speed, and frequent use of today's vehicles. Because of the growing demands and a dense county road system (inherited from the land settlement policies two centuries ago), revenue available to counties is inadequate to upgrade andmaintain the present system. Either revenue must be increased - an unpopular option - or costs must be reduced. To examine cost-saving options, Iowa State University conducted a study of roads and bridges in three 100 square mile areas in Iowa: • A suburban area • A rural area with a large number of paved roads, few bridges, and a high agricultural tax base and •A more rural area in a hilly terrain with many bridges and gravel roads, and a low agricultural tax base. A cost-benefit analysis was made on the present road system in these areas on such options as abandoning roads with limited use, converting some to private drives, and reducing maintenance on these types of roads. In only a few instances does abandonment of low traffic volume roads produce cost savings for counties and abutting land owners that exceed the additional travel costs to the public. In this study, the types of roads that produced net savings when abandoned were: • A small percentage (less than 5 percent) of the nonpaved county roads in the suburban area. However, net savings were very small. Cost savings from reducing the county road system in urbanized areas are very limited. • Slightly more than 5 percent of the nonpaved county roads in the most rural area that had a small number of paved county roads. • More than 12 percent of the nonpaved roads in the rural area that had a relatively large number of paved county and state roads. Converting low-volume roads to low-maintenance or Service B roads produces the largest savings of all solutions considered. However, future bridge deterioration and county liability on Service B roads are potential problems. Converting low-volume roads to private drives also produces large net savings. Abandonment of deadend roads results in greater net savings than continuous roads. However, this strategy shifts part of the public maintenance burden to land owners. Land owners also then become responsible for accident liability. Reconstruction to bring selected bridges with weight restrictions up to legal load limits reduces large truck and tractor-wagon mileage and costs. However, the reconstruction costs exceeded the reduction in travel costs. Major sources of vehicle miles on county roads are automobiles used for household purposes and pickup truck travel for farm purposes. Farm-related travel represents a relatively small percent of total travel miles, but a relatively high percentage of total travel costs.
Resumo:
This issue review provides an overall summary of Iowa's general fund budget. This issue review provides projections for the 2010 fiscal year and fiscal year 2011 budgets based on the October 7, 2009 revenue estimating conference's (REC) revenue estimate. The projection also includes the impact of the Governor's 10 percent across-the-board reduction to fiscal year 2010 general fund appropriations, and the Legislative Services Agency's most recent estimates of built-in and anticipated expenditures for fiscal year 2011.
Resumo:
The effects of diethylenetriaminpenta(methylenephosphonic acid) (DTPMP), a phosphonate inhibitor, on the growth of delayed ettringite have been evaluated using concrete in highway US 20 near Williams, Iowa, and the cores of six highways subject to moderate (built in 1992) or minor (built in 1997) deterioration. Application of 0.01 and 0.1 vol. % DTPMP to cores was made on a weekly or monthly basis for one year under controlled laboratory-based freeze-thaw and wet-dry conditions over a temperature range of -15 degrees to 58 degrees C to mimic extremes in Iowa roadway conditions. The same concentrations of phosphonate were also applied to cores left outside (roof of Science I at Iowa State University) over the same period of time. Nineteen applications of 0.1 vol. % DTPMP with added deicing salt solution (about 23 weight % NACL) were made to US 20 during the winters of 2003 and 2004. In untreated samples, air voids, pores, and occasional cracks are lined with acicular ettringite crystals (up to 50 micrometers in length) whereas air voids, pores, and cracks in concrete from the westbound lane of US 20 are devoid of ettringite up to a depth of about 0.5 mm from the surface of the concrete. Ettringite is also absent in zones up to 6 mm from the surface of concrete slabs placed on the roof of Science I and cores subject to laboratory-based freeze-thaw experiments. In these zones, the relatively high concentration of DTPMP caused it to behave as a chelator. Stunted ettringite crystals 5 to 25 micrometers in length, occasionally coated with porlandite, form on the margins of these zones indicating that in these areas DTPMP behaved as an inhibitor due to a reduction in the concentration of phosphonate. Analyses of mixes of ettringite and DTPMP using electrospray mass spectrometry suggests that the stunting of ettringite growth is caused by the adsorption of a Ca2+ ion and a water molecule to deprotonated DTPMP on the surface of the {0001} face of ettringite. It is anticipated that by using a DTPMP concentration of between 0.001 and 0.01 vol. % for the extended life of a highway (i.e. >20 years), deterioration caused by the expansive growth of ettringite will be markedly reduced.