15 resultados para Areas Naturales Protegidas
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Stability berms are commonly constructed where roadway embankments cross soft or unstable ground conditions. Under certain circumstances, the construction of stability berms cause unfavorable environmental impacts, either directly or indirectly, through their effect on wetlands, endangered species habitat, stream channelization, longer culvert lengths, larger right-of-way purchases, and construction access limits. Due to an ever more restrictive regulatory environment, these impacts are problematic. The result is the loss of valuable natural resources to the public, lengthy permitting review processes for the department of transportation and permitting agencies, and the additional expenditures of time and money for all parties. The purpose of this project was to review existing stability berm alternatives for potential use in environmentally sensitive areas. The project also evaluates how stabilization technologies are made feasible, desirable, and cost-effective for transportation projects and determines which alternatives afford practical solutions for avoiding and minimizing impacts to environmentally sensitive areas. An online survey of engineers at state departments of transportation was also conducted to assess the frequency and cost effectiveness of the various stabilization technologies. Geotechnical engineers that responded to the survey overwhelmingly use geosynthetic reinforcement as a suitable and cost-effective solution for stabilizing embankments and cut slopes. Alternatively, chemical stabilization and installation of lime/cement columns is rarely a remediation measure employed by state departments of transportation.
Resumo:
Vision: Each Iowans will have equal access to information and ideas in order to participate knowledgeably and productively in a democratic society and to lead an enriched life through lifelong learning. Mission: Helping libraries provide the best possible service to Iowans.
Resumo:
Pavement settlement occurring in and around utility cuts is a common problem, resulting in uneven pavement surfaces, annoyance to drivers, and ultimately, further maintenance. A survey of municipal authorities and field and laboratory investigations were conducted to identify the factors contributing to the settlement of utility cut restorations in pavement sections. Survey responses were received from seven cities across Iowa and indicate that utility cut restorations often last less than two years. Observations made during site inspections showed that backfill material varies from one city to another, backfill lift thickness often exceeds 12 inches, and the backfill material is often placed at bulking moisture contents with no Quality control/Quality Assurance. Laboratory investigation of the backfill materials indicate that at the field moisture contents encountered, the backfill materials have collapse potentials up to 35%. Falling Weight Deflectometer (FWD) deflection data and elevation shots indicate that the maximum deflection in the pavement occurs in the area around the utility cut restoration. The FWD data indicate a zone of influence around the perimeter of the restoration extending two to three feet beyond the trench perimeter. The research team proposes moisture control, the use of 65% relative density in a granular fill, and removing and compacting the native material near the ground surface around the trench. Test sections with geogrid reinforcement were also incorporated. The performance of inspected and proposed utility cuts needs to be monitored for at least two more years.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
Agreed upon procedures report on the six Library Service Areas in the State of Iowa for the period July 1, 2010 through June 30, 2011
Resumo:
During the 1980-81 fiscal year, the Office of Transportation Research conducted a study to examine the existing locations of highway maintenance garages in a study area provided by the Office of Maintenance. The study successfully identified a model referred to as an "Optimum Allocation Model" for examining highway maintenance garage locations in a given area. This model can optimally assign highway segments to maintenance garages and can also be used to evaluate the financial impact of closing or relocating a highway maintenance garage utilizing the highway maintenance-related data currently available at the Iowa DOT. The present study employs the optimum allocation model to examine the existing highway maintenance garage locations in two selected areas in the southeastern and southwestern parts of the state. These areas were selected by the Office of Maintenance and are referred to as "Study Area No. 1" and "Study Area No. 2" in this study. These study areas are shown in Appendices 1 and 2, respectively.
Determination of Flood Dischard Characteristics of Small Drainage Areas, HR-3, Progress Report, 1960
Resumo:
Project HR-3 of the Iowa Highway Research Board has been active since October 1, 1950. The project objective is the determination of flood discharge characteristics of small drainage areas. Funds for the project amount to $10,000 per year of which, by cooperative agreement, the Highway Commission and the U. S. Geological Survey each furnish $5,000. Previous reports have explained the set-up of the project and these explanations will not be repeated in this report.
Resumo:
The Iowa RCU has developed this selected bibliography of Iowa research in Vocational-Technical Education and related areas. Contract research as well as abstracts of masters theses and doctoral dissertations are included. For the most part, these abstracts have been gleaned from research at the three state universities and Drake University.
Resumo:
This is a supplement to the selected bibliography of Iowa research in Vocational-Technical Education and related areas that the Iowa RCU developed. Contract research as well as abstracts of masters theses and doctoral dissertations are included.
Resumo:
This is supplement no. 2 to the selected bibliography of Iowa research in Vocational-Technical Education and related areas that the Iowa RCU developed. Contract research as well as abstracts of masters theses and doctoral dissertations are included.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
Trench maintenance problems are caused by improper backfill placement and construction procedures. This report is part of a multiphase research project that aims to improve long-term performance of utility cut restoration trenches. The goal of this research is to improve pavement patch life and reduce maintenance of the repaired areas. The objectives were to use field-testing data, laboratory-testing data, and long-term monitoring (elevation survey and falling weight deflectometer testing) to suggest and modify recommendations from Phase I and to identify the principles of trench subsurface settlement and load distribution in utility cut restoration areas by using instrumented trenches. The objectives were accomplished by monitoring local agency utility construction from Phase I, constructing and monitoring the recommended trenches from Phase I, and instrumenting trenches to monitor changes in temperature, pressure, moisture content, and settlement as a function of time to determine the influences of seasonal changes on the utility cut performance.
Resumo:
This research project was intended to produce a strategy for addressing current and future access management problems on state highway routes located just outside urban areas that serve as major routes for commuting into and out of major employment centers in Iowa. There were two basic goals: (1) to develop a ranking system for identifying high-priority segments for access management treatments on primary highways outside metro and urban areas and (2) to focus efforts on routes that are major commuting routes at present and in the future. The project focused on four-lane expressways and two-lane arterials most likely to serve extensive commuter traffic. Available spatial and statistical data were used to identify existing and possible future problem corridors with respect to access management. The research team developed a scheme for ranking commuter routes based on their need for attention to access management. This project was able to produce rankings for corridors based on a variety of factors, including proportion of crashes that appear to be access-related, severity of those crashes, and potential for improvement along corridors. Frequency and loss were found to be highly rank correlated; because of this, these indicators were not used together in developing final priority rankings. Most of the highest ranked routes are on two-lane rural cross sections, but a few are four-lane expressways with at-grade private driveways and public road intersections. The most important conclusion of the ranking system is that many of the poor-performing corridors are located in a single Iowa Department of Transportation district near two urban areas--Des Moines and Ames. A comprehensive approach to managing access along commuting corridors should be developed first in this district since the potential benefits would be highest in that region.
Resumo:
Borrow areas are created where soil is needed to provide fill for construction projects. This research evaluated (1) the changes in row crop productivity resulting from removal of soil for highway construction in Iowa and (2) restoration methods which included: depth of topsoil, subsoil tillage, manure application, and two years of legume growth prior to row cropping. The research was carried out from 1977-1981 at four locations. Corn and soybean y1elds from borrow areas have been below, equal to; and greater than yields from undisturbed, neighboring farmland. Little or no yield increase was noted from restored topsoil at coarse textured sites. At finer textured sites, a marked yield increase of both crops occurred after the addition of 6 inches of topsoil but little added yield increase resulted from restoring 12 inches of topsoil. Subsoil tillage has shown little or no beneficial effect on crop yields. The manure treatment has resulted in a corn yield increase but only in the first year after application.
Resumo:
Borrow areas are created where soil is needed to provide fill for construction projects. The changes in row-crop productivity resulting from removal of soil for highway construction in Iowa and restoration methods, which included addition to topsoil, subsoil tillage, manure application, and 2 yr of legume growth before row cropping, were evaluated. The research was carried out from 1977 to 1981 at four locations. Corn and soybean yields from borrow areas have been below, equal to, and greater than yields from undisturbed neighboring farmland. Little or no yield increase was noted from restored topsoil at coarse-textured sites. At finer-textured sites, a marked yield increase of both crops occurred after the addition of 6 in. of topsoil but little added yield increase resulted from restoring 12 in. of topsoil. Subsoil tillage has shown little or no beneficial effect on crop yields. The manure treatment has resulted in a corn yield increase but only in the first year after application.