3 resultados para Antioxidant agents
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Structural repairs of bridges piers and abutments require patching concrete or mortar be placed at various thickness. Whether concrete or mortar is use depends upon the depth of the patch to be made. In some instances, the use of a liquid bonding agent has been specified in the mixes as well as in a grout scrubbed onto the surface to be patched prior to the mix placement. Most of the bonding agents presently approved by the Iowa D.O.T. are polyvinyl acetate (PVA) or some type of latex. In a general discussion with a consultant about various types of bridge repair materials and processes, the subject of bonding agents was discussed at some length. It was the opinion of the consultant that the usage of polyvinyl acetates should be discontinued because of possible deterioration of this material with time. Some of these materials apparently re-emulsify in a high - moisture environment causing serious patch deterioration. As a result of this information, a study was initiated to determine the durability of these materials.
Resumo:
Anti-strip agents can effect the temperature susceptibility of asphalt cement. This concern was expressed at the 33rd Annual Bituminous Conference in St. Paul, Minnesota by Mr. David Gendell, Director of Highway Operations. This study compares viscosity-temperature relationships of asphalt cement with and without anti-strip agent addition.
Resumo:
Oxidation is the primary cause of long-term aging in asphalt pavements. As a pavement oxidizes, it stiffens and can eventually crack. The use of an antioxidant as a performance enhancer in an asphalt binder could delay aging, thus increasing the life of an asphalt pavement. Lignin is a highly available and well-studied antioxidant. A wet-mill ethanol plant produces several co-products, some of which contain lignin. The use of lignin from ethanol production could provide a benefit to asphalt pavements and also give more value to the co-products. The following research examined the effects of lignin on asphalt pavements. Three lignin-containing co-products were separately combined with four asphalt binders in varying amounts to determine the optimum amount of co-product that would provide the greatest benefit to the asphalt binders. The asphalt binder and co-product blends were evaluated according to Superpave specifications and performance graded on a continuous scale. The data indicated a stiffening effect on the binder caused by the addition of the co-products. The more a co-product was added, the more a binder stiffened. Binder stiffening benefited the high temperature properties and the low temperature binder properties were negatively affected. However, the low temperature stiffening effects were small and in many cases not significant. The co-products had an overall effect of widening the temperature range of the binders. This result suggests some antioxidant activity between the binder and the lignin. Testing with a fourth co-product with no lignin supported the idea that lignin acts as an antioxidant. The samples with no lignin aged significantly more than the samples with lignin. Infrared spectrometry also supported the idea that lignin acts as an antioxidant by observing decreases in some oxidative aging products.