4 resultados para Anti-establishment
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
History of Child Welfare Legislation in the State of Iowa 1838-1898; Establishment of the Iowa State board of Control in 1898 and its influence on Child Welfare Legislation until 1925; Immediate background, organizing and the administration functions of the Child Welfare Division of the Social Welfare Department of the State of Iowa. NOTE: This document has pagination errors.
Resumo:
Anti-strip agents can effect the temperature susceptibility of asphalt cement. This concern was expressed at the 33rd Annual Bituminous Conference in St. Paul, Minnesota by Mr. David Gendell, Director of Highway Operations. This study compares viscosity-temperature relationships of asphalt cement with and without anti-strip agent addition.
Resumo:
The use of chemicals is a critical part of a pro-active winter maintenance program. However, ensuring that the correct chemicals are used is a challenge. On the one hand, budgets are limited, and thus price of chemicals is a major concern. On the other, performance of chemicals, especially at lower pavement temperatures, is not always assured. Two chemicals that are used extensively by the Iowa Department of Transportation (Iowa DOT) are sodium chloride (or salt) and calcium chloride. While calcium chloride can be effective at much lower temperatures than salt, it is also considerably more expensive. Costs for a gallon of salt brine are typically in the range of $0.05 to $0.10, whereas calcium chloride brine may cost in the range of $1.00 or more per gallon. These costs are of course subject to market forces and will thus change from year to year. The idea of mixing different winter maintenance chemicals is by no means new, and in general discussions it appears that many winter maintenance personnel have from time to time mixed up a jar of chemicals and done some work around the yard to see whether or not their new mix “works.” There are many stories about the mixture turning to “mayonnaise” (or, more colorfully, to “snot”) suggesting that mixing chemicals may give rise to some problems most likely due to precipitation. Further, the question of what constitutes a mixture “working” in this context is a topic of considerable discussion. In this study, mixtures of salt brine and calcium chloride brine were examined to determine their ice melting capability and their freezing point. Using the results from these tests, a linear interpolation model of the ice melting capability of mixtures of the two brines has been developed. Using a criterion based upon the ability of the mixture to melt a certain thickness of ice or snow (expressed as a thickness of melt-water equivalent), the model was extended to develop a material cost per lane mile for the full range of possible mixtures as a function of temperature. This allowed for a comparison of the performance of the various mixtures. From the point of view of melting capacity, mixing calcium chloride brine with salt brine appears to be effective only at very low temperatures (around 0° F and below). However, the approach described herein only considers the material costs, and does not consider application costs or other aspects of the mixture performance than melting capacity. While a unit quantity of calcium chloride is considerably more expensive than a unit quantity of sodium chloride, it also melts considerably more ice. In other words, to achieve the same result, much less calcium chloride brine is required than sodium chloride brine. This is important in considering application costs, because it means that a single application vehicle (for example, a brine dispensing trailer towed behind a snowplow) can cover many more lane miles with calcium chloride brine than with salt brine before needing to refill. Calculating exactly how much could be saved in application costs requires an optimization of routes used in the application of liquids in anti-icing, which is beyond the scope of the current study. However, this may be an area that agencies wish to pursue for future investigation. In discussion with winter maintenance personnel who use mixtures of sodium chloride and calcium chloride, it is evident that one reason for this is because the mixture is much more persistent (i.e. it stays longer on the road surface) than straight salt brine. Operationally this persistence is very valuable, but at present there are not any established methods to measure the persistence of a chemical on a pavement. In conclusion, the study presents a method that allows an agency to determine the material costs of using various mixtures of salt brine and calcium chloride brine. The method is based upon the requirement of melting a certain quantity of snow or ice at the ice-pavement interface, and on how much of a chemical or of a mixture of chemicals is required to do that.
Resumo:
Many prairie restoration projects are hampered by a lack of knowledge on how to restore the high diversity found in prairies, while at the same time preventing the establishment of a large weedy component. Methods are needed to increase diversity and abundance of native species while minimizing exotic species invasions in both 1) newly planted restorations and 2) established restorations. We established an experiment in Story and Monona counties in 2005 to determine the effects of different native cover crop species and timing of seeding on the establishment of new prairie restorations. We found that adding a 30-species prairie mix in early spring led to diverse native communities, but adding the mix in the late summer or the following year after cover crops established led to low diversity communities dominated by exotics. The identity of cover crops affected communities less than timing of seed additions. A second seed addition added to ash after a spring fire in the seventh year (Monona County site) increased recruitment from the prairie mix slightly, but the increase was not enough to cause convergence in the treatments. Surprisingly, the second seed addition increased diversity only in communities that were already the most diverse (i.e., in plots seeded with the prairie mix in early spring before cover crops established). These results imply that 1) cover crops are not effective for establishing prairie and 2) over seeding into established plots may not be an easy and efficient way to increase native recruitment and lower weedy species abundances. Therefore, focusing on establishing high levels of recruitment and diversity and excluding weedy species during the critical time early in establishment should be a priority for new projects.