3 resultados para Analog-Digital System

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automatic system was designed to concurrently measure stage and discharge for the purpose of developing stage-discharge ratings and high flow hydrographs on small streams. Stage, or gage height, is recorded by an analog-to-digital recorder and discharge is determined by the constant-rate tracer-dilution method. The system measures flow above a base stage set by the user. To test the effectiveness of the system and its components, eight systems, with a variety of equipment, were installed at crest-stage gaging stations across Iowa. A fluorescent dye, rhodamine-WT, was used as the tracer. Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work was to move structural health monitoring (SHM) one step closer to being ready for mainstream use by the Iowa Department of Transportation (DOT) Office of Bridges and Structures. To meet this goal, the objective of this project was to implement a pilot multi-sensor continuous monitoring system on the Iowa Falls Arch Bridge such that autonomous data analysis, storage, and retrieval can be demonstrated. The challenge with this work was to develop the open channels for communication, coordination, and cooperation of various Iowa DOT offices that could make use of the data. In a way, the end product was to be something akin to a control system that would allow for real-time evaluation of the operational condition of a monitored bridge. Development and finalization of general hardware and software components for a bridge SHM system were investigated and completed. This development and finalization was framed around the demonstration installation on the Iowa Falls Arch Bridge. The hardware system focused on using off-the-shelf sensors that could be read in either “fast” or “slow” modes depending on the desired monitoring metric. As hoped, the installed system operated with very few problems. In terms of communications—in part due to the anticipated installation on the I-74 bridge over the Mississippi River—a hardline digital subscriber line (DSL) internet connection and grid power were used. During operation, this system would transmit data to a central server location where the data would be processed and then archived for future retrieval and use. The pilot monitoring system was developed for general performance evaluation purposes (construction, structural, environmental, etc.) such that it could be easily adapted to the Iowa DOT’s bridges and other monitoring needs. The system was developed allowing easy access to near real-time data in a format usable to Iowa DOT engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.