3 resultados para Alternating
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
We develop a real option model of the irreversible native grassland conversion decision. Upon plowing, native grassland can be followed by either a permanent cropping system or a system in which land is put under cropping (respectively, grazing) whenever crop prices are high (respectively, low). Switching costs are incurred upon alternating between cropping and grazing. The effects of risk intervention in the form of crop insurance subsidies are studied, as are the effects of cropping innovations that reduce switching costs. We calibrate the model by using cropping return data for South Central North Dakota from 1989 to 2012. Simulations show that a risk intervention that offsets 20% of a cropping return shortfall increases the sod-busting cost threshold, below which native sod will be busted, by 41% (or $43.7/acre). Omitting cropping return risk across time underestimates this sod-busting cost threshold by 23% (or $24.35/acre), and hence underestimates the native sod conversion caused by crop production.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (bentonite) as a dust palliative for limestone surfaced secondary roads. It had been postulated that the electrically charged surfaces of the clay particles could interact with the charged surfaces of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates and also to band the fine particulates to larger (+#200) limestone particles. Laboratory testing using soda ash dispersed bentonite treatment of limestone fines indicated significant improvement of compressive strength and slaking characteristics. It was recommended that the project proceed to field trials and test roads were constructed in Dallas and Adair counties in Iowa. Soda ash dispersed bentonite solutions can be field mixed and applied with conventional spray distribution equipment. A maximum of 1.5% bentonite(by weight of aggregate)can be applied at one time. Higher applications would have to be staged allowing the excess moisture to evaporate between applications. Construction of higher application treatments can be accomplished by adding dry bentonite to the surfacing material and then by dry road mixing. The soda ash water solution can then be spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 3 to 4 inch slump concrete. Two motor graders working in tandem can provide rapid mixing for both methods of construction. Calcium and magnesium chloride treatments are 2 to 3 times more effective in dust reduction in the short term (3-4 months) but are prone to washboarding and potholing due to maintenance restrictions. Bentonite treatment at the 2-3% level is estimated to provide a 30-40% dust reduction over the long term(18-24 months). Normal maintenance blading operations can be used on bentonite treated areas. Vehicle braking characteristics are not adversely affected up to the 3.0% treatment level. The bentonite appears to be functioning as a banding agent to bind small particulates to larger particles and is acting to agglomerate fine particles of limestone. This bonding capability appears recoverable from environmental effects of winter, and from alternating wet and dry periods. The bentonite appears to be able to interact with new applications of limestone maintenance material and maintains a dust reduction capability. Soda ash dispersed bentonite treatment is approximately 10 times more cost effective per percent dust reduction than conventional chloride treatments with respect to time. However,the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced 30-40% after treatment there is still dust being generated and the traveling public or residents may not perceive the reduction.
Resumo:
The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.