10 resultados para Alluvial plains.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Alluvial Aquifers of Iowa in 2004
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
The primary purposes of this investigation are: 1) To delineate flood plain deposits with different geologic and engineering properties. 2) To provide basic data necessary for any attempt at stabilizing flood plain deposits. The alluvial valley of the Missouri River adjacent to Iowa was chosen as the logical place to begin this study. The river forms the western boundary of the state for an airline distance of approximately 139 miles; and the flood plain varies from a maximum width of approximately 18 miles (Plates 2 and 3, Sheets 75 and 75L) to approximately 4 miles near Crescent, Iowa (Plate 8, Sheet 66). The area studied includes parts of Woodbury, Monona, Harrison, Pottawattamie, Mills, and Fremont counties in Iowa and parts of Dakota, Thurston, Burt, Washington, Douglas, Sarpy, Cass and Otoe counties in Nebraska. Plate l is an index map of the area under consideration.
Resumo:
The State of Iowa currently has approximately 69,000 miles of unpaved secondary roads. Due to the low traffic count on these unpaved o nts as ng e two dust ed d roads, paving with asphalt or Portland cement concrete is not economical. Therefore to reduce dust production, the use of dust suppressants has been utilized for decades. This study was conducted to evaluate the effectiveness of several widely used dust suppressants through quantitative field testing on two of Iowa’s most widely used secondary road surface treatments: crushed limestone rock and alluvial sand/gravel. These commercially available dust suppressants included: lignin sulfonate, calcium chloride, and soybean oil soapstock. These suppressants were applied to 1000 ft test sections on four unpaved roads in Story County, Iowa. Tduplicate field conditions, the suppressants were applied as a surface spray once in early June and again in late August or early September. The four unpaved roads included two with crushed limestone rock and two with alluvial sand/gravel surface treatmewell as high and low traffic counts. The effectiveness of the dust suppressants was evaluated by comparing the dust produced on treated and untreated test sections. Dust collection was scheduled for 1, 2, 4, 6, and 8 weeks after each application, for a total testiperiod of 16 weeks. Results of a cost analysis between annual dust suppressant application and biennial aggregate replacement indicated that the cost of the dust suppressant, its transportation, and application were relatively high when compared to that of thaggregate types. Therefore, the biennial aggregate replacement is considered more economical than annual dust suppressant application, although the application of annual dust suppressant reduced the cost of road maintenance by 75 %. Results of thecollection indicated that the lignin sulfonate suppressant outperformed calcium chloride and soybean oil soapstock on all four unpavroads, the effect of the suppressants on the alluvial sand/gravel surface treatment was less than that on the crushed limestone rock, the residual effects of all the products seem reasonably well after blading, and the combination of alluvial sand/gravel surface treatment anhigh traffic count caused dust reduction to decrease dramatically.
Resumo:
Team Archaeology is excited to be riding with you this year! We hope to make our participation an annual opportunity to share the story of Iowa’s amazing past. As you ride across the state you will be passing by the locations of hundreds of known archaeological sites and an as yet unknown number of new discoveries waiting to be made. These archaeological sites, and the artifacts they contain, tell the history of the first people to travel this landscape and the stories of each generation that has contributed to what we know of ourselves today. As you travel through our beautiful state, you too are now a part of that story, making history for the future to learn and wonder about! The Office of the State Archaeologist serves a unique dual role in Iowa as both a designated research unit of The University of Iowa and as a state agency. The larger mission of the OSA is to develop, disseminate, and preserve knowledge of Iowa’s human past through Midwestern and Plains archaeological research, scientific discovery, public stewardship, service, and education. It is our goal to provide all Iowans the opportunity to learn about their past. I see this as an investment in the preservation of a nonrenewable resource—the archaeological record of Iowa. Look for the Team Archeology members as you ride and be sure to ask them about Iowa archeology. Please help yourself to free materials about our shared past from our information tables at each overnight town and get one of the free Iowa Archeology wrist bands. There will also be free public talks by local archaeologists each afternoon, as well as flintknapping and other demonstrations of archaeological interest, so keep this booklet as your guide to the week’s activities. Most of all, ride smart, be safe, and when you get home tell your friends and neighbors about Iowa archaeology!
Resumo:
The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement projects encountering 13,000- to 150-year-old Native American sites. This project identifies critical variables for assessing prehistoric sites potential, examines the quality of available data about the variables, and applies the data to creating a decision support framework for use by the Iowa Department of Transportation (Iowa DOT) and others. An analysis of previous archaeological surveys indicates that subsurface testing to discover buried sites became increasingly common after 1980, but did not become routine until after the adoption of guidelines recommending such testing, in 1993. Even then, the average depth of testing has been relatively shallow. Alluvial deposits of sufficient age, deposited in depositional environments conducive to human habitation, are considerably thicker than archaeologists have routinely tested.
Resumo:
Browse through this guide and you’ll find the distinct flavor of what is available along each byway. Discover recreational, historic, cultural and scenic attractions using the maps and lists provided in the guide. You’ll find numbered attractions for each byway in or near the town listed. For a comprehensive list of byway features, visit www.iowabyways.org. Friendly local contacts are provided to help you along the way. Iowa Transportation Maps clearly tracking all the Iowa byways with red dotted lines are available at Iowa’s official welcome centers. Traveling Iowa’s byways you will experience small town America, while enjoying diverse landscapes and unique landforms that have been shaped over thousands of years. Iowa’s cultural heritage also plays a major role across all 11 byways, boasting hundreds of historic sites, national landmarks and interpretive centers, each telling Iowa’s stories from the first Native Americans through European immigrants to modern times. Glaciers once covered much of Iowa, shaping the broad flat plains of the prairie. These massive sheets of ice missed the northeast corner of the state, leaving the land along the Driftless Area Byway rugged and hilly with rock outcroppings, springs and cold water trout streams. Rivers coursed their way through the land, carving deep furrows in some places and leaving gently rolling hills in others. In western Iowa, wind has shaped fine sand into the impressive Loess Hills, a rare land form found in only one other place on earth. Iowa’s two national scenic byways and nine state byways offer unique varieties of scenic features, and more for you to see and do. View three states from atop a Mississippi River bluff, stop at a modern art museum and then tour a working farm. Explore a historic mill, visit a national aquarium, take a boat ride in a cave, purchase locally crafted pottery and wares from local artisans or trace the footsteps of Lewis and Clark. Experience the actual wagon ruts of the Mormon Trail, ride your bike 13 stories high, canoe a water trail, star gaze under Iowa’s darkest sky, and marvel at mounds built by prehistoric cultures. Agriculture wraps Iowa’s byways with an abundance of farmland vistas and fills Iowa lands with ever-changing crops and activities for you to “harvest.” You’ll see croplands on the vast flat plains and farmsteads sprinkled across rolling hills reminiscent of a Grant Wood painting. Along the way, you might wander in a corn maze, rest at a bed and breakfast, study farming in museums, discover the Iowa barn quilt collection or visit a working Amish farm. When you are ready to step outside your vehicle, you’ll find much more to do and see. Prairie, forests, rivers and public lands are abundant along Iowa’s byways; providing opportunities for you to stop and play in the outdoors with hiking, biking, kayaking and trout fishing. Classic hometowns with pride for their unique lore and offerings are found all along the byways. They invite you to taste local food, enjoy their architecture, and immerse yourself in the rich history and culture that defines them. Why not plan your next journey off the beaten path? No matter how you choose to make the most of every moment, we know that time spent along Iowa’s byways is sure to grow your love for Iowa’s diverse, beautiful vistas and authentic communities. Happy driving!
Resumo:
Clinton, Iowa, one of the first railroad crossings over the Mississippi River, has been a major gateway to the Great Plains and beyond since 1859. For more than 100 years, the railroads employed thousands and supported a good quality of life in Clinton. Railroad activities peaked both nationally and in Clinton during and after World War II. By the 1990s, the Union Pacific was redeveloping their railroad facilities adjacent to Camanche Avenue and U.S. Highway 30. The legacy of the railroad in Clinton has been preserved in this study.
Resumo:
US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.