10 resultados para Air analysis
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.
Resumo:
This research project investigated the use of image analysis to measure the air void parameters of concrete specimens produced under standard laboratory conditions. The results obtained from the image analysis technique were compared to results obtained from plastic air content tests, Danish air meter tests (also referred to as Air Void Analyzer tests), high-pressure air content tests on hardened concrete, and linear traverse tests (as per ASTM C-457). Hardened concrete specimens were sent to three different laboratories for the linear traverse tests. The samples that were circulated to the three labs consisted of specimens that needed different levels of surface preparation. The first set consisted of approximately 18 specimens that had been sectioned from a 4 in. by 4 in. by 18 in. (10 cm by 10 cm by 46 cm) beam using a saw equipped with a diamond blade. These specimens were subjected to the normal sample preparation techniques that were commonly employed by the three different labs (each lab practiced slightly different specimen preparation techniques). The second set of samples consisted of eight specimens that had been ground and polished at a single laboratory. The companion labs were only supposed to retouch the sample surfaces if they exhibited major flaws. In general, the study indicated that the image analysis test results for entrained air content exhibited good to strong correlation to the average values determined via the linear traverse technique. Specimens ground and polished in a single laboratory and then circulated to the other participating laboratories for the air content determinations exhibited the strongest correlation between the image analysis and linear traverse techniques (coefficient of determination, r-squared = 0.96, for n=8). Specimens ground and polished at each of the individual laboratories exhibited considerably more scatter (coefficient of determination, r-squared = 0.78, for n=16). The image analysis technique tended to produce low estimates of the specific surface of the voids when compared to the results from the linear traverse method. This caused the image analysis spacing factor calculations to produce larger values than those obtained from the linear traverse tests. The image analysis spacing factors were still successful at distinguishing between the frost-prone test specimens and the other (more durable) test specimens that were studied in this research project.
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.
Resumo:
Premature deterioration of slip formed portland cement concrete (PCC) barriers is an ongoing problem in the Iowa Primary and Interstate highway system. The requirement to have a concrete mix which can be sufficiently pliable to be readily molded into the barrier shape and yet be sufficiently stiff to maintain a true shape and height immediately after molding is difficult to meet. A concrete mix which is stiff enough to maintain its shape immediately after molding is usually difficult to work with. It often contains open or hidden tears and large voids. One way to minimize the molding resistance is by additional vibration. If intensive vibration is applied, the entrapped air voids and tears in the concrete can usually be eliminated, however, in that process, the essential entrained air content can also be lost. In the evaluation of slip formed PCC barriers, it is common to find large voids, tears and a low entrained air content, all contributing to premature deterioration. A study was initiated to evaluate core samples taken from good and from bad appearing areas of various median barriers. Evaluations were done covering visual appearance, construction information, air content and chloride content.
Resumo:
An adequate air void system is imperative to produce concrete with freeze-thaw durability in a wet freeze environment such as found in Iowa. Specifications rely on a percentage of air obtained in the plastic state by the pressure meter. Actual, in place air contents, of some concrete pavements in Iowa, have been found with reduced air content due to a number of factors such as excessive vibration and inadequate mixing. Determining hardened air void parameters is a time consuming process involving potential for human error. The RapidAir 457 air void analyzer is an automated device used to determine hardened air void parameters. The device is used in Europe and has been shown to quickly produce accurate and repeatable hardened air results. This research investigates how well the RapidAir 457 results correlate to plastic air content and the image analysis air technique. The repeatability and operator variation were also investigated, as well as, the impact of aggregate porosity and selection of threshold value on hardened air results.
Resumo:
The development of new rail systems in the first part of the 21st century is the result of a wide range of trends that are making it increasingly difficult to maintain regional mobility using the two dominant intercity travel modes, auto and air. These trends include the changing character of the economic structure of industry. The character of the North American industrial structure is moving rapidly from a manufacturing base to a service based economy. This is increasing the need for business travel while the increase in disposable income due to higher salaries has promoted increased social and tourist travel. Another trend is the change in the regulatory environment. The trend towards deregulation has dramatically reduced the willingness of the airlines to operate from smaller airports and the level of service has fallen due to the creation of hub and spoke systems. While new air technology such as regional jets may mitigate this trend to some degree in medium-size airports, smaller airports will continue to lose out. Finally, increasing environmental concerns have reduced the ability of the automobile to meet intercity travel needs because of increased suburban congestion and limited highway capacity in big cities. Against this background the rail mode offers new options due to first, the existing rail rights-of-way offering direct access into major cities that, in most cases, have significant capacity available and, second, a revolution in vehicle technology that makes new rail rolling stock faster and less expensive to purchase and operate. This study is designed to evaluate the potential for rail service making an important contribution to maintaining regional mobility over the next 30 to 50 years in Iowa. The study evaluates the potential for rail service on three key routes across Iowa and assesses the impact of new train technology in reducing costs and improving rail service. The study also considers the potential for developing the system on an incremental basis. The service analysis and recommendations do not involve current Amtrak intercity service. That service is presumed to continue on its current route and schedule. The study builds from data and analyses that have been generated for the Midwest Rail Initiative (MWRI) Study. For example, the zone system and operating and capital unit cost assumptions are derived from the MWRI study. The MWRI represents a cooperative effort between nine Midwest states, Amtrak and the Federal Railroad Administration (FRA) contracting with Transportation Economics & Management Systems, Inc. to evaluate the potential for a regional rail system. The 1 The map represents the system including the decision on the Iowa route derived from the current study. Iowa Rail Route Alternatives Analysis TEMS 1-2 system is to offer modern, frequent, higher speed train service to the region, with Chicago as the connecting hub. Exhibit 1-1 illustrates the size of the system, and how the Iowa route fits in to the whole.
Resumo:
The purpose of this study was to investigate the effect of cement paste quality on the concrete performance, particularly fresh properties, by changing the water-to-cementitious materials ratio (w/cm), type and dosage of supplementary cementitious materials (SCM), and airvoid system in binary and ternary mixtures. In this experimental program, a total matrix of 54 mixtures with w/cm of 0.40 and 0.45; target air content of 2%, 4%, and 8%; a fixed cementitious content of 600 pounds per cubic yard (pcy), and the incorporation of three types of SCMs at different dosages was prepared. The fine aggregate-to- total aggregate ratio was fixed at 0.42. Workability, rheology, air-void system, setting time, strength, Wenner Probe surface resistivity, and shrinkage were determined. The effects of paste variables on workability are more marked at the higher w/cm. The compressive strength is strongly influenced by the paste quality, dominated by w/cm and air content. Surface resistivity is improved by inclusion of Class F fly ash and slag cement, especially at later ages. Ternary mixtures performed in accordance with their ingredients. The data collected will be used to develop models that will be part of an innovative mix proportioning procedure.
Resumo:
Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.
Resumo:
The major objective of this work was to evaluate the potential of image analysis for characterizing air voids in Portland cement Concrete (PCC), voids and constituents of Asphalt Concrete (AC) and aggregate gradation in AC. Images for analysis were obtained from a scanning electron microscope (SEM). Sample preparation techniques are presented that enhance signal differences so that backscattered electron (BSE) imaging, which is sensitive to atomic number changes, can be effectively employed. Work with PCC and AC pavement core samples has shown that the low vacuum scanning electron microscope (LVSEM) is better suited towards rapid analyses. The conventional high vacuum SEM can also be used for AC and PCC analyses but some distortion within the sample matrix will occur. Images with improved resolution can be obtained from scanning electron microscope (SEM) backscatter electron (BSE) micrographs. In a BSE image, voids filled with barium sulfate/resin yield excellent contrast in both PCC and AC. There is a good correlation between percent of air by image analysis and linear traverse.
Resumo:
The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.