24 resultados para Aggregated rainfall
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This report summarizes research conducted at Iowa State University on behalf of the Iowa Department of Transportation, focusing on the volumetric state of hot-mix asphalt (HMA) mixtures as they transition from stable to unstable configurations. This has raditionally been addressed during mix design by meeting a minimum voids in the mineral aggregate (VMA) requirement, based solely upon the nominal maximum aggregate size without regard to other significant aggregate-related properties. The goal was to expand the current specification to include additional aggregate properties, e.g., fineness modulus, percent crushed fine and coarse aggregate, and their interactions. The work was accomplished in three phases: a literature review, extensive laboratory testing, and statistical analysis of test results. The literature review focused on the history and development of the current specification, laboratory methods of identifying critical mixtures, and the effects of other aggregate-related factors on critical mixtures. The laboratory testing involved three maximum aggregate sizes (19.0, 12.5, and 9.5 millimeters), three gradations (coarse, fine, and dense), and combinations of natural and manufactured coarse and fine aggregates. Specimens were compacted using the Superpave Gyratory Compactor (SGC), conventionally tested for bulk and maximum theoretical specific gravities and physically tested using the Nottingham Asphalt Tester (NAT) under a repeated load confined configuration to identify the transition state from sound to unsound. The statistical analysis involved using ANOVA and linear regression to examine the effects of identified aggregate factors on critical state transitions in asphalt paving mixtures and to develop predictive equations. The results clearly demonstrate that the volumetric conditions of an HMA mixture at the stable unstable threshold are influenced by a composite measure of the maximum aggregate size and gradation and by aggregate shape and texture. The currently defined VMA criterion, while significant, is seen to be insufficient by itself to correctly differentiate sound from unsound mixtures. Under current specifications, many otherwise sound mixtures are subject to rejection solely on the basis of failing to meet the VMA requirement. Based on the laboratory data and statistical analysis, a new paradigm to volumetric mix design is proposed that explicitly accounts for aggregate factors (gradation, shape, and texture).
Resumo:
In the summer of 2008, the state of Iowa suffered from a series of severe storms that produced tornadoes and heavy rainfall, which resulted in widespread flooding. The Summer Storms1 lasted from late May through mid-August, with the most intense storms occurring over a month-long period from May 25 to June 25. The Summer Storms exacted a major human and economic toll on Iowa, resulting in 18 fatalities and 106 injuries, forcing the evacuation of approximately 38,000 Iowans, and impacting 21,000 housing units. Iowa’s public and private sectors suffered significant monetary damages. Eighty-six of the ninety-nine counties in the state were included in the Governor’s disaster declarations.
Resumo:
Nationwide, about five cents of each highway construction dollar is spent on culverts. In Iowa, average annual construction costs on the interstate, primary, and federal-aid secondary systems are about $120,000,000. Assuming the national figure applies to Iowa, about $6,000,000 are spent on culvert construction annually. For each one percent reduction in overall culvert costs, annual construction costs would be reduced by $60,000. One area of potential cost reduction lies in the sizing of the culvert. Determining the flow area and hydraulic capacity is accomplished in the initial design of the culvert. The normal design sequence is accomplished in two parts. The hydrologic portion consists of the determination of a design discharge in cubic feet per second using one of several available methods. This discharge is then used directly in the hydraulic portion of the design to determine the proper type, size, and shape of culvert to be used, based on various site and design restrictions. More refined hydrologic analyses, including rainfall-runoff analysis, flood hydrograph development, and streamflow routing techniques, are not pursued in the existing design procedure used by most county and state highway engineers.
Resumo:
In the summer of 2008, the state of Iowa suffered from a series of severe storms that produced tornadoes and heavy rainfall, which resulted in widespread flooding. The Summer Storms1 lasted from late May through mid-August, with the most intense storms occurring over a month-long period from May 25 to June 25. The Summer Storms exacted a major human and economic toll on Iowa, resulting in 18 fatalities and 106 injuries, forcing the evacuation of approximately 38,000 Iowans, and impacting 21,000 housing units. Iowa’s public and private sectors suffered significant monetary damages. Eighty-six of the ninety-nine counties in the state were included in the Governor’s disaster declarations. Presidential disaster declarations made residents in 84 counties eligible for Public Assistance and 78 counties for Individual Assistance. The Rebuild Iowa Advisory Commission estimated $798.3 million in damages to publicly owned buildings and infrastructure, including damages of $53 million to public transportation and $342 million to public utilities. The 2008 Summer Storms presented unique coordination challenges for the Iowa Homeland Security and Emergency Management Division (HSEMD) and the State Emergency Operations Center (SEOC). These challenges arose from three interrelated factors: the large number of local jurisdictions and areas impacted, the prolonged period of time that response operations were conducted, and the increasing complexity of overall response operations. These events caused the SEOC to coordinate response, mitigation, recovery, and preparedness operations simultaneously. HSEMD and the SEOC implemented a variety of measures to enhance their ability to coordinate operations and assistance to localities. The SEOC expanded its organizational structure, implemented innovative techniques, and incorporated new partners into its activities. These steps enabled HSEMD and SEOC to coordinate operations more effectively, which undoubtedly helped save lives and property, while mitigating the effects of the 2008 Summer Storms.
Resumo:
The Missouri River floods of 2011 will go down in history as the longest duration flooding event this state has seen to date. The combination of above normal snowfall in the upper Missouri River basin followed by the equivalent of nearly one year’s worth of rainfall in May created an above normal runoff situation which filled the Missouri River and the six main reservoirs within the basin. Compounding this problem was colder than normal temperatures which kept much of the snowpack in the upper basin on the ground longer into the spring, setting the stage for this historic event. The U.S. Army Corps of Engineers (USACE) began increasing the outflow at Gavin’s Point, near Yankton, South Dakota in May. On June 14, 2011, the outflow reached a record rate of over 160,000 cubic feet per second (cfs), over twice the previous record outflow set in 1997. This increased output from Gavin’s Point caused the Missouri River to flow out of its banks covering over 283,000 acres of land in Iowa, forcing hundreds of evacuations, damaging 255,000 acres of cropland and significantly impacting the levee system on the Missouri River basin. Over the course of the summer, approximately 64 miles of primary roads closed due to Missouri River flooding, including 54 miles of Interstate Highway. Many county secondary roads were closed by high water or overburdened due to the numerous detours and road closures in this area. As the Missouri River levels began to increase, municipalities and counties aided by State and Federal agencies began preparing for a sustained flood event. Citizens, businesses, state agencies, local governments and non‐profits made substantial preparations, in some cases expending millions of dollars on emergency protective measures to protect their facilities from the impending flood. Levee monitors detected weak spots in the levee system in all affected counties, with several levees being identified as at risk levees that could potentially fail. Of particular concern was the 28 miles of levees protecting Council Bluffs. Based on this concern, Council Bluffs prepared an evacuation plan for the approximately 30,000 residents that resided in the protected area. On May 25, 2011, Governor Branstad directed the execution of the Iowa Emergency Response Plan in accordance with Section 401 of the Stafford Act. On May 31, 2011, HSEMD Administrator, Brigadier General J. Derek Hill, formally requested the USACE to provide technical assistance and advanced measures for the communities along the Missouri River basin. On June 2, 2011 Governor Branstad issued a State of Iowa Proclamation of Disaster Emergency for Fremont, Harrison, Mills, Monona, Pottawattamie, and Woodbury counties. The length of this flood event created a unique set of challenges for Federal, State and local entities. In many cases, these organizations were conducting response and recovery operations simultaneously. Due to the length of this entire event, the State Emergency Operations Center and the local Emergency Operations Centers remained open for an extended period of time, putting additional strain on many organizations and resources. In response to this disaster, Governor Branstad created the Missouri River Recovery Coordination Task Force to oversee the State’s recovery efforts. The Governor announced the creation of this Task Force on October 17, 2011 and appointed Brigadier General J. Derek Hill, HSEMD Administrator as the chairman. This Task Force would be a temporary group of State agency representatives and interested stakeholders brought together to support the recovery efforts of the Iowa communities impacted by the Missouri River Flood. Collectively, this group would analyze and share damage assessment data, coordinate assistance across various stakeholders, monitor progress, capture best practices and identify lessons learned.
Resumo:
The purpose of Research Project HR-182 was to identify those aggregate types which would perform satisfactorily as seal coat aggregates. Aggregates were chosen from across the State to represent the various types normally encountered and were used with two different types of binder bitumens. A water spray treatment was also included to simulate the effects of rainfall. The evaluation was based upon aggregate retention. Due to the influence of unexpected variables upon the field samples, the laboratory data are reliable for only the most general observations. Namely, that gravels as a group appear to be retained better than carbonates and rain-fall shortly after seal coat placement can affect aggregate retention. The subsequent field observations and analysis of skid resistance data permit the following conclusions: 1. Aggregate retention is influenced by lithologic type with the gravels, quartzite, haydite, dolomites, and medium grained limestones performing best. 2. Aggregate retention is not influenced by binder bitumen type. 3. Friction values of seal coats are influ-enced by aggregate retention and/or lithologic type. The following recommendations have been determined: The aggregate used for cover aggregate/seal coat projects should be Type 4 or better skid resistance as identified in Iowa DOT Materials Instructional Memorandum T-203. This will result in maximizing the possibility of good aggregate retention and skid resistance.
Resumo:
A water-surface-elevation profile and peak discharges for the flood of May 19, 1990, along Perry Creek in Plymouth and Woodbury Counties, Iowa, are presented in this report. The peak discharge for the May 19, 1990, flood on Perry Creek at 38th Street, Sioux City (06600000) is the second largest flood-peak discharge recorded at the streamflow-gaging station for the period 1939-95. The peak discharge for May 19, 1990, of 8,670 cubic feet per second, is approximately equal to the 35-year recurrence-interval discharge. The report provides information on flood stages and discharges and floodflow frequencies for streamflow- gaging stations in the Perry Creek Basin using flood information collected during 1939-95. Information on temporary bench marks and reference points established in the Perry Creek Basin during 1990-93 is also included in the report. A flood history describes rainfall conditions for the three largest floods that occurred during 1939-95 (July 1944, September 1949, and May 1990).
Resumo:
Water-surface-elevation profiles and peak discharges for the floods of 1973 and 1979 are compared to those of 1986 and 1990 in the Raccoon River basin, west-central Iowa. The profiles illustrate the 1979 and 1986 floods on the Raccoon, South Raccoon, and Middle Raccoon Rivers, the 1973 and 1986 floods on Walnut Creek, and the 1986 flood on Willow Creek and Mosquito Creek. The 1986 flood is the largest on record at U.S. Geological Survey streamflowgaging stations on the Middle Raccoon River tributary at Carroll, Middle Raccoon River near Bayard, Middle Raccoon River at Panora, and Walnut Creek at Des Moines. The 1990 flood discharge is the largest on record at U.S. Geological Survey crest-stage gaging stations on Hardin Creek near Farlin and on East Fork Hardin Creek near Churdan. The flood history given in this report describes rainfall conditions for floods that occurred during 1986 and 1990. Discharge for the 1990 flood on East Fork Hardin Creek near Churdan was 1.01 times larger than the 100-year recurrence-interval discharge.
Resumo:
Severe flooding occurred during July 19-25, 1999, in the Wapsipinicon and Cedar River Basins following two thunderstorms over northeast Iowa. During July 18-19, as much as 6 inches ofrainfall was centered over Cerro Gordo, Floyd, Mitchell, and Worth Counties. During July 20-21, a second storm occurred in which an additional rainfall of as much as 8 inches was centered over Chickasaw and Floyd Counties. The cumulative effect of the storms produced floods with new maximum peak discharges at the following streamflow-gaging stations: Wapsipinicon River near Tripoli, 19,400 cubic feet per second; Cedar River at Charles City, 31,200 cubic feet per second (recurrence interval about 90 years); Cedar River at Janesville, 42,200 cubic feet per second (recurrence interval about 80 years); and Flood Creek near Powersville, 19,000 cubic feet per second. Profiles of flood elevations for the July 1999 flood are presented in this report for selected reaches along the Wapsipinicon, Cedar, and Shell Rock Rivers and along Flood Creek. Information about the river basins, rain storms, and flooding are presented along with information on temporary bench marks and reference points in the Wapsipinicon and Cedar River Basins.
Resumo:
Record flooding occurred May 17-20, 1999, in the Volga and Wapsipinicon River Basins following thunderstorm activity over northeast Iowa. On Sunday, May 16, between 6 and 8 inches of rain fell during a 24- hour period over portions of Bremer, Butler, and Fayette Counties. Highest rainfall during this 24-hour period was 8.3 inches recorded north of Oelwein in southwest Fayette County. A peak discharge of 29,800 cubic feet per second in the Volga River at Mederville, 53,900 cubic feet per second in the Turkey River at Garber, and 31, 100 cubic feet per second in the Wapsipinicon River at Independence set new peak discharge records. The peak discharge at Garber was greater than a theoretical 500-year flood, and the peak discharge at Independence was the equivalent of a 90- year flood. Information about the basins, rain storms, flooding, and a profile of high water marks are presented for selected intervals along the Volga River, Wapsipinicon River, Crane Creek, Little Wapsipinicon River, and Otter Creek.
Resumo:
Record flooding occurred June 15-17, 1998, in the Nishnabotna and East Nishnabotna River basins following severe thunderstorm activity over southwest Iowa. More than 8 inches of rain fell over a large part of Cass County. The rain gage at Atlantic, Iowa recorded a 24-hour total rainfall of 13.18 inches, which established a new official State record for the greatest amount of rainfall in a 24-hour period. The peak discharge was 41,400 cubic feet per second in the East Nishnabotna River near Atlantic, 60,500 cubic feet per second in the East Nishnabotna River at Red Oak, and 65,100 cubic feet per second in the Nishnabotna River above Hamburg. The peak discharge at Atlantic was greater than the theoretical 200-year flood and the peak discharges at Red Oak and Hamburg were greater than the respective theoretical 500-year floods. Information about the basin, the rain storms, the flooding, and a profile of high water marks at selected intervals along the Nishnabotna and East Nishnabotna Rivers are presented in this report.
Resumo:
Water-surface-elevation profiles and peak discharges for the floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River Basins, south-central Iowa, are presented in this report. The profiles illustrate the 1992 floods along the Thompson, Weldon, Chariton, and South Fork Chariton Rivers and along Elk Creek in the south-central Iowa counties of Adair, Clarke, Decatur, Lucas, Madison, Ringgold, Union, and Wayne. Water-surface-elevation profiles for the floods of July 4, 1981, along the Chariton River in Lucas County and along the South Fork Chariton River in Wayne County also are included in the report for comparative purposes. The September 15-16, 1992, floods are the largest known peak discharges at gaging stations Thompson River at Davis City (station number 06898000) 57,000 cubic feet per second, Weldon River near Leon (station number 06898400) 76,200 cubic feet per second, Chariton River near Chariton (station number 06903400) 37,700 cubic feet per second, and South Fork Chariton River near Promise City (station number 06903700) 70,600 cubic feet per second. The peak discharges were, respectively, 1.7, 2.6, 1.4, and 2.1 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Thompson, Weldon, and Chariton River Basins using flood information collected through 1995. Information on temporary bench marks and reference points established in the Thompson and Weldon River Basins during 1994-95, and in the Chariton River Basin during 1983-84 and 1994-95, also is included in the report. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1959, 1981, 1992, and 1993.
Resumo:
In the summer of 2008, the state of Iowa suffered from a series of severe storms that produced tornadoes and heavy rainfall, which resulted in widespread flooding. The Summer Storms1 lasted from late May through mid-August, with the most intense storms occurring over a month-long period from May 25 to June 25. The Summer Storms exacted a major human and economic toll on Iowa, resulting in 18 fatalities and 106 injuries, forcing the evacuation of approximately 38,000 Iowans, and impacting 21,000 housing units. Iowa’s public and private sectors suffered significant monetary damages. Eighty-six of the ninety-nine counties in the state were included in the Governor’s disaster declarations. Presidential disaster declarations made residents in 84 counties eligible for Public Assistance and 78 counties for Individual Assistance. The Rebuild Iowa Advisory Commission estimated $798.3 million in damages to publicly owned buildings and infrastructure, including damages of $53 million to public transportation and $342 million to public utilities.
Resumo:
The Missouri River floods of 2011 will go down in history as the longest duration flooding event this state has seen to date. The combination of above normal snowfall in the upper Missouri River basin followed by the equivalent of nearly one year’s worth of rainfall in May created an above normal runoff situation which filled the Missouri River and the six main reservoirs within the basin. Compounding this problem was colder than normal temperatures which kept much of the snow pack in the upper basin on the ground longer into the spring, setting the stage for this historic event.
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.