4 resultados para Advertising layout and typography.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This issue review provides an analysis of the Economic Development Authority Tourism Office advertising funding and expenditures, along with a review of the methodology and results of the economic impact of travel on Iowa counties study.
Resumo:
The objective of this study was to develop guidelines for use of the Iowa Vanes technique for sediment control in bridge waterways. Iowa Vanes are small flow-training structures (foils) designed to modify the near-bed flow pattern and redistribute flow and sediment transport within the channel cross section. The structures are installed at an angleof attack of 15 - 25' with the flow, and their initial height is 0.2 - 0.5 times water depth at design stage. The vanes function by generating secondary circulation in the flow. The circulation alters magnitude and direction of the bed shear stress and causes a reduction in velocity and sediment transport in the vane controlled area. As a result, the river bed aggrades in the vane controlled area and degrades outside. This report summarizes the basic theory, describes results of laboratory and field tests, and presents the resulting design procedure. Design graphs have been developed based on the theory. The graphs are entered with basic flow variables and desired bed topography. The output is vane layout and design. The procedure is illustrated with two numerical examples prepared with data that are typical for many rivers in Iowa and the midwest. The report also discusses vane material. In most applications, the vane height will be between 30% and 50% of bankfull flow depth and the vane length will be two to three times vane height. The vanes will be placed in arrays along the bank of the river. Each array will contain two or more vanes. The vanes in an array will be spaced laterally a distance of two to three times vane height. The streamwise spacing between the arrays will be 15 to 30 times vane height, and the vane-to-bank distance will be three to four times vane height. The study also show that the first (most upstream) array in the vane system must be located a distance of at least three array spacings upstream from the bridge, and there must be at least three arrays in the system for it to be effective at and downstream from the third array.
Resumo:
Crashworthy, work-zone, portable sign support systems accepted under NCHRP Report No. 350 were analyzed to predict their safety peformance according to the TL-3 MASH evaluation criteria. An analysis was conducted to determine which hardware parameters of sign support systems would likely contribute to the safety performance with MASH. The acuracy of the method was evaluated through full-scale crash testing. Four full-scale crash tests were conducted with a pickup truck. Two tall-mounted, sign support systems with aluminum sign panels failed the MASH criteria due to windshield penetration. One low-mounted system with a vinyl, roll-up sign panel failed the MASH criteria due to windshield and floorboard penetration. Another low-mounted system with an aluminum sign panel successfully met the MASH criteria. Four full-scale crash tests were conducted with a small passenger car. The low-mounted tripod system with an aluminum sign panel failed the MASH criteria due to windshield penetration. One low-mounted system with aluminum sign panel failed the MASH criteria due to excessive windshield deformation, and another similar system passed the MASH criteria. The low-mounted system with a vinyl, roll-up sign panel successfully met the MASH criteria. Hardware parameters of work-zone sign support systems that were determined to be important for failure with MASH include sign panel material, the height to the top of the mast, the presence of flags, sign-locking mechanism, base layout and system orientation. Flowcharts were provided to assist manufacturers when designing new sign support systems.
Resumo:
The Buena Vista SWCD is submitting this WIRB request on behalf of both Buena Vista and Pocahontas SWCDs. The two SWCDs are working jointly on a project that includes three existing Mississippi River Basin Imitative (MRBI) project areas in the North Raccoon River Watershed. The total project area is 280,654 crop acres. The MRBI project involves installing conservation practices through the EQIP program. Funding from MRBI will support costs of practice design, layout and checkout, however, there is no funding to market and sell the program and practices to landowners and producers in the project area. Both soil and water districts are financially supporting work currently being done to encourage signup for the approved practices. To effectively implement the MRBI project it is imperative that marketing and promotion through group meetings and one-on one contacts is completed. Funding from WIRB will allow the existing employee to spend the needed time on these promotional activities in both Buena Vista and Pocahontas County. Through this WIRB request these two SWCDs districts plan to apply over $800,000 worth of conservation practices that is funded through the MRBI program. The return from this investment of WIRB dollars is large. This is an opportunity to support a large amount of conservation work in the North Raccoon River Watershed, which, is also an important water source for the city Des Moines and provides recreational activities from Des Moines up to BY and Pocahontas Counties.