24 resultados para Additive sentences

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research was conducted in 1980 using Additive 5990 to prevent reflective cracking in asphalt cement concrete when placed over portland cement concrete. Test sections were placed with 08, 3%, 6 8 , and 9% Additive 5990 by weight of asphalt cement at mix temperatures between 375OF and 415°F with AC-5 and AC-10 grade asphalt cement. Also, sections using AC-5 and AC-10 were constructed with the normal mix temperature (not to exceed 330°F). One section was placed using AC-20 mixed at the normal mix temperature. It was concluded that the Additive 5990 did not prevent reflective cracking on this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over three decades, the number of Iowa inmates with life sentences has shown a steady increase. As the chart below shows, that number has risen from 111 in 1980 to 680 in 2012 (data for 1987 is unavailable due to transitioning to new data systems)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seal coat and chip seal treatments are commonly used as an economical treatment to provide a new surface to an old asphalt roadway. To be successful, the aggregate or chips must be held in place on the roadway by the asphalt binder over a long period of time. It is common, over time, that the binder becomes aged and brittle and loses its ability to be flexible and hold the aggregate in place. Modifiers have been introduced to extend the life and adhesion characteristics of asphaltic binders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the results of a limited investigation of the use of lime as an auxiliary additive for improving the stabilization of soils with cutback asphalts. It is felt that the data obtained presents additional information on the subject of asphalt stabilization

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, various types of organic and inorganic materials have been investigated for use as soil stabilizing agents in the construction of highways and airports. Since the properties and environmental conditions of soils vary so greatly from place to place, a stabilizing agent that is suitable for one type of soil may not be satisfactory for another. As a result, it is often desirable to evaluate several stabilizing agents under varying treatment conditions before deciding on a specific one to be used with a given soil. In addition many research programs have been initiated which investigate the effects of these stabilizing agents upon soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of a selected self-cementing, Class C fly ash to blow sand soils improves their compacted strength greatly as opposed to the minimal strength improvement when fly ash is mixed with loess soil. By varying the percentage of fly ash added, the resulting blow sand-fly ash mixture can function as a low strength stabilized material or as a higher strength sub-base. Low strength stabilized material can also be obtained by mixing loess soils with a selected Class C fly ash. The development of the higher strength values required for subbase materials is very dependent upon compaction delay time and moisture condition of the material. Results at this time indicate that, when compaction delays are involved, excess moisture in the material has the greatest positive effect in achieving minimum strengths. Other added retarding agents, such as borax and gypsum, have less effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with disabilities have civil rights protection similar to that provided to individuals on the basis of race, sex, national origin, and religion. The advent of the Americans with Disabilities Act has improved these protections and brought this issue into the forefront. This book is not intended to be a legal translation of state or federal laws. Its purpose is to assist people with disabilities in understanding their rights. Please consult the Code of Iowa, the appropriate federal laws or an attorney if you need a legal interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to evaluate the performance of the product Ultracote® (a polymer based additive produced by Ultrapave, a division of Goodyear) as an aggregate pre-treatment for the reduction of asphalt binder absorption in hot mix asphalt (HMA). The product was tested with a paving project in Louisa county, Iowa with aggregate that had historically shown very high asphalt binder absorption. Results of the testing did not provide any evidence of reduction in binder absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report was compiled at the request of the Department of Corrections. The first section describes Iowa’s prison inmate population at mid-year. The first section also provides a comparison of the mid-year 1998 prison population with the population one year ago, and five years ago. Included is analysis of sex, race/ethnicity, age categories, life terms, mandatory minimum sentences, number of sentences per inmate, and offense type. Following the statewide section are Facility Profiles that examine each Department of Corrections institution. The facility profiles cover the same types of information as the statewide report for mid-year 1998, except that committing county and judicial district, Board of Parole risk scores and sex are excluded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing virgin and recovered binder properties, performing pavement condition surveys, and comparing survey data with the Mechanistic Empirical Pavement Design Guide (MEPDG) forecast for pavement damage over 20 years of service life. Further objectives detailing curing behavior, quality assurance testing, and hybrid technologies were as follows: * Compare the predicted and observed field performance of existing WMA trials produced in the previous Phase I study to that of hot-mix asphalt (HMA) control sections to determine if Phase I conclusions are translating to the field; * Identify any curing effect (and timing of the effect) of WMA mixtures and binders in the field; * Determine how the field-compacted mixture properties and recovered binder properties of WMA compare to those of HMA over time for technologies common to Iowa; * Identify the protocols for WMA sample preparation for volumetric and performance testing that best simulate field conditions. The findings of this study indicate that WMA additives do show statistical differences in mixture properties in some of the mixes tested. These differences will not always be statistically different from mixture to mixture. Multiple factors, such as WMA additive type, amount of recycled asphalt material, construction conditions, and mixture variability all play a role in determining the extent of which WMA and HMA mixes differ. Other significant findings of this study include effects of curing, aging in recovered binders from HMA and WMA cores, and the influence of recycled asphalt shingles (RAS) used with WMA. These findings will be of interest to owner agencies and contractors utilizing WMA technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is no surprise that probationers are less likely to receive new felony or aggravated misdemeanor convictions than are parolees following discharge from supervision; probationers tend to be at lower risk to begin with. Likewise, parolees tend to be at lower risk and less likely to be convicted of serious offenses than are offenders who complete their sentences in prison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During 1986, the City of Des Moines placed an experimental asphaltic concrete overlay containing an ice-retardant additive (Verglimit) on Euclid Avenue (U.S. Highway 6). Verglimit is a chemical multi-component deicer which is added to the surface course of an asphalt overlay. The additive was uniformly distributed through the mix at the asphalt plant, which allows exposure of the particles as the finished surface wears under traffic. During a snowfall, the exposed particles attract and absorb moisture creating a deicing solution which dampens the pavement. The Verglimit additive used on this project cost $1,180 per metric ton. The Verglimit was added at a rate of 6.3% by weight, which was 126 pounds per ton, or $66.38 per ton of hot mix asphalt. The purchase of Verglimit additive was funded by the Iowa Department of Transportation through a research project recommended by the Highway Research Advisory Board. The pavement surface experienced severe wetting due to the additive's affinity for water immediately after the project was completed and during periods of high humidity. This wetting created slippery conditions both on the project itself and where vehicles tracked the additive. The only way to remove the slipperiness was by flushing the street with water. The ice-retardant overlay appears to perform as expected in reducing the adherence of ice and snow, especially at temperatures just below freezing. It performs better in light snowfalls than in heavy ones. The ice retardant overlay is effective in eliminating thin coatings of ice due to freezing drizzle or widespread frost. The accident data showed a reduction in the number of snow and ice related accidents but due to the low number of this type of accident the results are inconclusive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.