3 resultados para ARTIFICIAL TASTE SENSOR

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document provides language that can be used by an Owner-Agency to develop materials and construction specifications with the objective of reducing tire/pavement noise. While the practices described herein are largely prescriptive, they have been demonstrated to increase the likelihood of constructing a durable, quieter concrete surface. Guidance is provided herein for texturing the concrete surface since texture geometry has a paramount effect on tire/pavement noise. Guidance for curing is also provided to improve strength and durability of the surface mortar, and thus to improve texture durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent snow removal asset management system (SRAMS). The system has been evaluated through a case study examining snow removal from the roads in Black Hawk County, Iowa, for which the Iowa Department of Transportation (Iowa DOT) is responsible. The SRAMS is comprised of an expert system that contains the logical rules and expertise of the Iowa DOT’s snow removal experts in Black Hawk County, and a geographic information system to access and manage road data. The system is implemented on a mid-range PC by integrating MapObjects 2.1 (a GIS package), Visual Rule Studio 2.2 (an AI shell), and Visual Basic 6.0 (a programming tool). The system could efficiently be used to generate prioritized snowplowing routes in visual format, to optimize the allocation of assets for plowing, and to track materials (e.g., salt and sand). A test of the system reveals an improvement in snowplowing time by 1.9 percent for moderate snowfall and 9.7 percent for snowstorm conditions over the current manual system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.