4 resultados para AFT Models for Crash Duration Survival Analysis
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.
Resumo:
Photographic documentation of crashed vehicles at the scene can be used to improve triage of crash victims. A U.S. expert panel developed field triage rules to determine the likelihood of occupants sustaining serious injuries based on vehicle damage that would require transport to a trauma center (Sasser et al., 2011). The use of photographs for assessing vehicle damage and occupant compartment intrusion as it correlates to increased injury severity has been validated (Davidson et al., 2014). Providing trauma staff with crash scene photos remotely could assist them in predicting injuries. This would allow trauma care providers to assess the appropriate transport, as well as develop mental models of treatment options prior to patient arrival at the emergency department (ED). Crash-scene medical response has improved tremendously in the past 20-30 years. This is in part due to the increasing number of paramedics who now have advanced life support (ALS) training that allows independence in the field. However, while this advanced training provides a more streamlined field treatment protocol, it also means that paramedics focused on treating crash victims may not have time to communicate with trauma centers regarding crash injury mechanisms. As a result, trauma centers may not learn about severe trauma patients until just a few minutes before they arrive. The information transmitted by the TraumaHawk app allows interpretation of injury mechanisms from crash scene photos at the trauma center, providing clues about the type and severity of injury. With strategic crash scene photo documentation, trained trauma professionals can assess the severity and patterns of injury based on exterior crush and occupant intrusion. Intrusion increases the force experienced by vehicle occupants, which translates into a higher level of injury severity (Tencer et al., 2005; Assal et al., 2002; Mandell et al., 2010). First responders have the unique opportunity to assess the damaged vehicle at the crash scene, but often the mechanism of injury is limited or not even relayed to ED trauma staff. To integrate photographic and scene information, an app called TraumaHawk was created to capture images of crash vehicles and send them electronically to the trauma center. If efficiently implemented, it provides the potential advantage of increasing lead-time for preparation at the trauma center through the crash scene photos. Ideally, the result is better treatment outcomes for crash victims. The objective of this analysis was to examine if the extra lead-time granted by the TraumaHawk app could improve trauma team activation time over the current conventional communication method.
Resumo:
This report presents a national synthesis of rural expressway, two-way stop -controlled (TWSC) intersection safety strategies and intersection designs and an analysis of Iowa expressway TWSC intersection crash characteristics. A rural expressway is a multi-lane highway with a divided median and with mostly at -grade intersections, although some intersections may be grade separated. The synthesis of intersection strategies is conducted in two parts. The first is a literature review and the second part is a national survey of strategies currently being applied by state transportation agencies. The characterization of crash patterns at TWSC expressway intersections is examined through the analysis of 5 years of crash data at 644 intersections.
Resumo:
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.