11 resultados para ADEQUACY
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
In accordance with Iowa Code Section 8A.502(8) we are pleased to submit the Comprehensive Annual Financial Report (CAFR) for the State of Iowa for the fiscal year ended June 30, 2005. The report is presented in three sections as follows: • The Introductory Section includes this transmittal letter, the Government Finance Officers Association (GFOA) Certificate of Achievement for the fiscal year 2004 CAFR, an organizational chart of State government, and a list of principal State officials. • The Financial Section contains the independent auditor’s report on the Basic Financial Statements, Management’s Discussion and Analysis (MD&A), the Basic Financial Statements, and Notes to the Financial Statements. The Financial Section also contains Required Supplementary Information (RSI), other than the MD&A, and supplementary information in the form of combining financial statements and schedules. This letter is intended to be read in conjunction with the MD&A. • The Statistical Section highlights selected financial and demographic information, generally presented on a multi-year basis. The Department of Administrative Services is responsible for both the accuracy of the presented data, and the completeness and fairness of the presentation. We believe the information presented is accurate in all material respects and the necessary disclosures have been made which enable the reader to obtain an understanding of the State’s financial activity. This report has been prepared in accordance with U.S. generally accepted accounting principles (GAAP) for governments as promulgated by the Governmental Accounting Standards Board (GASB). As a part of the statewide accounting system upgrade during fiscal year 2005, the implementation team performed a comprehensive review of the adequacy of internal controls and budgetary controls of the system. The team determined that internal controls continue to be in place to provide reasonable, but not absolute, assurance that assets are safeguarded against unauthorized use or disposition, and that financial records from all appropriate sources are reliable for preparing financial statements and maintaining accountability. The concept of reasonable assurance recognizes the cost of internal controls should not exceed the benefits likely to be derived from their use. To monitor the adequacy of internal controls, the Auditor of State reviews internal control procedures as an integral part of departmental audits.
Resumo:
The Iowa Department of Transportation (IDOT) received a Strategic Highway Research Program (SHRP) gyratory compactor in December 1994. Since then IDOT has been studying the ability of the compactor to analyze fundamental properties of aggregates such as shape, texture, and gradation by studying the volumetrics of the aggregate blends under a standard load using the SHRP gyratory compactor. This method of analyzing the volumetrics of aggregate blends is similar to SHRP's fine aggregate angularity procedure, which analyzes void levels in noncompacted aggregate blends, which in turn can be used to evaluate the texture or shape of aggregates, what SHRP refers to as angularity. Research is showing that by splitting the aggregate blend on the 2.36-mm (#8) sieve and analyzing the volumetrics or angularity of the separated blend, important fundamental properties can be determined. Most important is structure (the degree and location of aggregate interlock). In addition, analysis of the volumes of the coarse and fine portions can predict the voids in the mineral aggregate and the desired asphalt content. By predicting these properties, it can be determined whether the combined aggregate blend, when mixed with asphalt cement, will produce a mix with structural adequacy to carry the designed traffic load.
Resumo:
Heavy traffic volumes frequently cause distress in asphalt pavements which were designed under accepted design methods and criteria. The distress appears in the form of rutting in the wheel tracks and rippling or shoving in areas where traffic accelerates or decelerates. Apparently accepted stability test methods alone do not always assure the desired service performance of asphaltic pavements under heavy traffic. The Bituminous Research Laboratory, Engineering Research Institute of Iowa State University undertook the development of a laboratory device by which the resistance of an asphalt paving mix to displacement under traffic might be evaluated, and also be used as a supplemental test to determine adequacy of design of the mix by stability procedures.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
The TR-608 project developed methods and processes for determining current and future Iowa secondary (county) road needs. These tools will be permanently maintained and operated by the Iowa County Engineers Association Service Bureau to provide ongoing need determination services for the state’s ninety-nine county road departments. The systems established via this project will annually tally and report a) how much funding is needed to sustain the county roads long term, b) the adequacy of the secondary roads for the traffic they carry and c) what upgrade needs exist. A “Trend Projection Engine” will also be available to project from current circumstance, with continuation of known revenue and cost trends, to estimate potential outcomes occurring in the next fifteen years. Now that it has been developed, the TR-608 system will continue as an ongoing resource of county road and bridge numbers, condition, trends and issue information for use by counties, either individually or collectively.
Resumo:
This manual provides a set of procedural rules and regulations for use in functionally classifying all roads and streets in Iowa according to the character of service they are intended to provide. Functional classification is a requirement of the 1973 Code of Iowa (Chapter 306) as amended by Senate File 1062 enacted by the 2nd session of the 65th General Assembly of Iowa. Functional classification is defined as the grouping of roads and streets into systems according to the character of service they will be expected to provide, and the assignment of jurisdiction over each class to the governmental unit having primary interest in each type of service. Stated objectives of the legislation are: "Functional classification will serve the legislator by providing an equitable basis for determination of proper source of tax support and providing for the assignment of financial resources to the governmental unit having responsibility for each class of service. Functional classification promotes the ability of the administrator to effectively prepare and carry out long range programs which reflect the transportation needs of the public." All roads and streets in legal existence will be classified. Instructions are also included in this manual for a continuous reporting to the Highway Commission of changes in classification and/or jurisdiction resulting from new construction, corporation line changes, relocations, and deletions. This continuous updating of records is absolutely essential for modern day transportation planning as it is the only possible way to monitor the status of existing road systems, and consequently determine adequacy and needs with accuracy.
Resumo:
The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution. The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) models was performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived. To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.
Resumo:
In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment.
Resumo:
In order to determine the adequacy with which safety problems on low-volume rural roadways were addressed by the four states of Federal Region VII (Iowa, Kansas, Missouri, and Nebraska), a review was made of the states' safety policies. After reviewing literature dealing with the identification of hazardous locations, evaluation methodologies, and system-wide safety improvements, a survey of the states' safety policies was conducted. An official from each state was questioned about the various aspects and procedures dealing with safety improvements. After analyzing and comparing the remarkably diverse policies, recommendations were made in the form of a model safety program. This program included special modifications that would help remediate hazards on low-volume rural roadways. Especially encouraged is a system-wide approach to improvement which would cover all parts of the highway system, not just urban and high-volume roadways.
Resumo:
In June 1988, 1341 employees of the Iowa State Department of Transportation (DOT) were surveyed via a mailed questionnaire. The sample was selected such that conclusions about all DOT employees, male employees, female employees, majority employees; minority employees, employees under age 40, and employees 40 years of age or older could be made. These sampling characteristics were chosen in order to facilitate comparisons between current DOT employee attitudes and employee attitudes evaluated in 1984. In addition, the sample size and response rates were sufficiently high that conclusions could be made about each of the six districts, the Ames Highway Division, and the Ames complex, excluding the Highway Division. Altogether fifty-five percent (or 739) questionnaires were· returned. Thirty additional employees voluntarily completed the survey, resulting in a final sample size of 769. The survey covered topics related to job satisfaction, work environment or climate, skill utilization, sexual harassment, communication and information adequacy, and morale. The first four topics were evaluated in 198- while the last two were unique to this survey.
Resumo:
The purpose of the audit is to provide a report to management of the adequacy of controls employed to manage this work area. Where appropriate, recommendations and comments are provided for management consideration. Consideration is given to compliance with applicable policies and procedures, both federal and state. Economy and efficiency of operations are considered to the degree feasible but are not primary objectives.