249 resultados para ACCELERATED PORTLAND-CEMENT

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the current research in portland cement concrete (PCC) pavements deals with the analysis of early pavement life failures and seeks to find ways to prevent those from reoccurring. The Long Term Pavement Performance (LTPP) portion of the Strategic Highway Research Program (SHRP) has identified some of the key factors in designing and building new PCC pavements. This statement will build on the Iowa Highway Research Board (IHRB) project TR-463, Field Performance Study of Past Iowa Pavement Research: A Look Back. In Iowa and across the nation, there are multiple pavements that were built more than 20 years ago that have been and are continuing to provide very good service to the public. They are found on both state and local routes and in both low and high traffic volume areas. There is a need to learn what went into those pavements, from the subgrade through the surface, that makes them perform so well. The purpose of this research project was to conduct a scoping study that could be used to evaluate the need for additional research to study the attributes of well-performing concrete pavements. The concept of zero-maintenance jointed plain concrete pavements” was iterated in this study for long-lasting, well-performing portland cement concrete pavement sections. The scope of the study was limited to a brief literature survey, pavement performance data collection from many counties, cities, and primary and interstate roads in Iowa, field visits to many selected pavement sites, and analysis of the collected data. No laboratory orfield testing was conducted for this phase of the project. A problem statement with a research plan was created that could be used to guide the second phase of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes results from a study evaluating the use of stringless paving using a combination of global positioning and laser technologies. CMI and Geologic Computer Systems developed this technology and successfully implemented it on construction earthmoving and grading projects. Concrete paving is a new area for considering this technology. Fred Carlson Co. agreed to test the stringless paving technology on two challenging concrete paving projects located in Washington County, Iowa. The evaluation was conducted on two paving projects in Washington County, Iowa, during the summer of 2003. The research team from Iowa State University monitored the guidance and elevation conformance to the original design. They employed a combination of physical depth checks, surface location and elevation surveys, concrete yield checks, and physical survey of the control stakes and string line elevations. A final check on profile of the pavement surface was accomplished by the use of the Iowa Department of Transportation Light Weight Surface Analyzer (LISA). Due to the speed of paving and the rapid changes in terrain, the laser technology was abandoned for this project. Total control of the guidance and elevation controls on the slip-form paver were moved from string line to global positioning systems (GPS). The evaluation was a success, and the results indicate that GPS control is feasible and approaching the desired goals of guidance and profile control with the use of three dimensional design models. Further enhancements are needed in the physical features of the slipform paver oil system controls and in the computer program for controlling elevation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premature deterioration of slip formed portland cement concrete (PCC) barriers is an ongoing problem in the Iowa Primary and Interstate highway system. The requirement to have a concrete mix which can be sufficiently pliable to be readily molded into the barrier shape and yet be sufficiently stiff to maintain a true shape and height immediately after molding is difficult to meet. A concrete mix which is stiff enough to maintain its shape immediately after molding is usually difficult to work with. It often contains open or hidden tears and large voids. One way to minimize the molding resistance is by additional vibration. If intensive vibration is applied, the entrapped air voids and tears in the concrete can usually be eliminated, however, in that process, the essential entrained air content can also be lost. In the evaluation of slip formed PCC barriers, it is common to find large voids, tears and a low entrained air content, all contributing to premature deterioration. A study was initiated to evaluate core samples taken from good and from bad appearing areas of various median barriers. Evaluations were done covering visual appearance, construction information, air content and chloride content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concrete paving industry has spent large amounts of time working to provide safe, quiet, and smooth pavements for the traveling public as their needs and driving habits have changed since the advent of the automobile. During that time, the efforts of research, design, and construction were directed at one of the problems at a time. Current public surveys indicate that the traveling public wishes to have safe, quiet, and smooth pavements. This report identifies the problems remaining in the areas of developing smooth, quiet, and safe portland cement concrete pavement in each pavement we build. It develops the research framework that can be used to bring the existing information together with additional research in each area. The resulting answers can be used in each pavement design for a quiet, safe, and smooth pavement that is also long lasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing infrastructure has aged to or past the design life of the original pavement design. In many cases, increased commercial traffic is creating the need for additional load carrying capacity, causing state highway engineers to consider new alternatives for rehabilitation of existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement overlays and subsequent rehabilitation. The Iowa ultra-thin project demonstrated the application of thin portland cement concrete overlays as a rehabilitation technique. It combined the variables of base preparation, overlay thickness, slab size, and fiber enhancement into a series of test sections over a 7.2-mile length. This report identifies the performance of the overlays in terms of deflection reduction, reduced cracking, and improved bonding between the portland cement concrete (PCC) and asphalt cement concrete (ACC) base layers. The original research project was designed to evaluate the variables over a 5-year period of time. A second project provided the opportunity to test overlay rehabilitation techniques and continue measurement of the original overlay performance for 5 additional years. All performance indicators identified exceptional performance over the 10-year evaluation period for each of the variable combinations considered. The report summarizes the research methods, results, and identifies future research ideas to aid the pavement overlay designer in the successful implementation of ultra-thin portland cement concrete overlays as an lternative pavement rehabilitation technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safety i s a very important aspect o f the highway program. The Iowa DOT initiated an inventory o f the friction values of all paved primary roadways i n 1969. This inventory, with an ASTM E-274 test unit, has continued to the present time. The t e s t i n g frequency varies based upon traffic volume and the previous friction value. Historically , the state o f Iowa constructed a substantial amount o f pcc pavement during the 1928-30 period t o "get Iowa out o f the mud". Some of that pavement has never been resurfaced and has been subjected to more than 50 years o f wear. The textured surface has been worn away and has subsequently polished. Even though some pavements from 15 t o 50 years old continue t o function structurally , because of the loss of friction , they do not provide the desired level o f safety to the driver. As a temporary measure, "Sl ippery -When -Wet " signs have been posted on many older pcc roads due to friction numbers below t h e desirable level. These signs warn the motorist of the current conditions. An economical method of restoring the high quality frictional properties i s needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research project was designed to identify the typical Iowa material input values that are required by the Mechanistic-Empirical Pavement Design Guide (MEPDG) for the Level 3 concrete pavement design. It was also designed to investigate the existing equations that might be used to predict Iowa pavement concrete for the Level 2 pavement design. In this project, over 20,000 data were collected from the Iowa Department of Transportation (DOT) and other sources. These data, most of which were concrete compressive strength, slump, air content, and unit weight data, were synthesized and their statistical parameters (such as the mean values and standard variations) were analyzed. Based on the analyses, the typical input values of Iowa pavement concrete, such as 28-day compressive strength (f’c), splitting tensile strength (fsp), elastic modulus (Ec), and modulus of rupture (MOR), were evaluated. The study indicates that the 28-day MOR of Iowa concrete is 646 + 51 psi, very close to the MEPDG default value (650 psi). The 28-day Ec of Iowa concrete (based only on two available data of the Iowa Curling and Warping project) is 4.82 + 0.28x106 psi, which is quite different from the MEPDG default value (3.93 x106 psi); therefore, the researchers recommend re-evaluating after more Iowa test data become available. The drying shrinkage (εc) of a typical Iowa concrete (C-3WR-C20 mix) was tested at Concrete Technology Laboratory (CTL). The test results show that the ultimate shrinkage of the concrete is about 454 microstrain and the time for the concrete to reach 50% of ultimate shrinkage is at 32 days; both of these values are very close to the MEPDG default values. The comparison of the Iowa test data and the MEPDG default values, as well as the recommendations on the input values to be used in MEPDG for Iowa PCC pavement design, are summarized in Table 20 of this report. The available equations for predicting the above-mentioned concrete properties were also assembled. The validity of these equations for Iowa concrete materials was examined. Multiple-parameters nonlinear regression analyses, along with the artificial neural network (ANN) method, were employed to investigate the relationships among Iowa concrete material properties and to modify the existing equations so as to be suitable for Iowa concrete materials. However, due to lack of necessary data sets, the relationships between Iowa concrete properties were established based on the limited data from CP Tech Center’s projects and ISU classes only. The researchers suggest that the resulting relationships be used by Iowa pavement design engineers as references only. The present study furthermore indicates that appropriately documenting concrete properties, including flexural strength, elastic modulus, and information on concrete mix design, is essential for updating the typical Iowa material input values and providing rational prediction equations for concrete pavement design in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural repairs of bridges piers and abutments require patching concrete or mortar be placed at various thickness. Whether concrete or mortar is use depends upon the depth of the patch to be made. In some instances, the use of a liquid bonding agent has been specified in the mixes as well as in a grout scrubbed onto the surface to be patched prior to the mix placement. Most of the bonding agents presently approved by the Iowa D.O.T. are polyvinyl acetate (PVA) or some type of latex. In a general discussion with a consultant about various types of bridge repair materials and processes, the subject of bonding agents was discussed at some length. It was the opinion of the consultant that the usage of polyvinyl acetates should be discontinued because of possible deterioration of this material with time. Some of these materials apparently re-emulsify in a high - moisture environment causing serious patch deterioration. As a result of this information, a study was initiated to determine the durability of these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fly ash was used in this evaluation study to replace 30, 50 and 70 percent of the 400 1bs. of cement currently used in each cu. yd. of portland cement econocrete base paving mix. Two Class "c" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "c" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths with and without fly ash were determined at 7, 28 and 56 days of age. In most cases, strengths were adequate. The freeze/thaw durability of the econocrete mixes studied was not adversely affected by the presence of fly ash. The tests along with erodibility and absorption tests have demonstrated the feasibility of producing econocrete with satisfactory mechanical properties even when relatively low quality and/or locally available aggregate is being used at no sacrifice to strength and/or durability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improving the aggregate gradation for a portland cement concrete mix may result in higher compressive strengths. With an improved gradation, the cement factor may be reduced to achieve a more economical concrete mix since cement is the most expensive component in a Portland cement concrete mix. This project located on I-80 westbound in Scott County, Iowa examined three different mixes. 1. Standard Class C mix with project aggregates. 2. Standard Class C mix with an improved aggregate gradation. 3. Standard Class C mix with an improved aggregate gradation and 10% cementitious reduction.