16 resultados para 77-538A
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Suzan M. Stewart, Research Librarian, Iowa Geological Survey. and Edward J. Stanek II, Director, Air Management Division, Iowa Department of Environmental Quality
Resumo:
Bureau of Nutrition and Health Promotion part of the Iowa Department of Public Health produces of weekly newsletter about the Iowa WIC Program for the State of Iowa citizen.
Resumo:
We are depleting the once seemingly endless supply of aggregate available for concrete paving in Iowa. At the present time, some parts of our state do not have locally available aggregates of acceptable quality for portland cement concrete paving. This necessitates lengthy truck and rail hauls which frequently more than doubles the price of aggregate. In some parts of the state, the only coarse aggregates available locally are "d-cracking" in nature. Iowa's recycling projects were devised to alleviate the shortage of aggregates wherever they were found to have an economic advantage. We completed our first recycling project in 1976 on a 1.4 project in Lyon county. The data collected in this project was used to schedule two additional projects in 1977. The larger of these two projects is located in Page and Taylor county on Highway #2 and is approximately 15 miles in length. This material is to be crushed and re-used in the concrete paving, it is to be reconstructed on approximately the same alignment. The second project is part of the construction of Interstate I-680 north of council Bluffs where an existing 24 foot portland cement concrete roadway is to be recycled and used as the aggregate in the slip form econocrete subbase and the portland cement concrete shoulders.
Resumo:
A research project involving 2, 3, 4, and 5 in. (5.1, 7.6, 10.2, and 12.7 cm) of bonded portland cement concrete (PCC) overlay on a 1.3 mile (2.1 km) PCC pavement was conducted in Clayton County, Iowa, during September 1977, centering on the following objectives: (1) Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense PCC mixture using standard mixes with super water reducing admixtures; (2) Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced PCC resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super water reducing admixtures; and (3) Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced PCC can be obtained with only special surface cleaning and no surface removal or grinding. The conclusions are as follows: (1) Normal mixing equipment and proportioning procedures could be used using a conventional central-mix proportioning plant. This was successful when used with super water reducing admixtures. Only minor changes need be made in procedures and timing. (2) The time has been too short since the completion of the project to determine how the new pavement will perform, however, initially it appears that the method is economical and no reason is seen at this time why the life of the pavement should not be comparable to an all new pavement. (3) The initial test results show that bond strength, regardless of which method of cleaning is used, scarifying, sand blasting or water blasting, far exceed what is considered the minimum bond strength of 200 psi (1379 kPa) except where the paint stripes were intentionally left, thus showing that the paint must be removed. (4) It appears that either cement and water grout or sand, cement and water grout may be used and still obtain the required bond.
Resumo:
Two objectives were involved in this recycling project: To determine if the asphalt concrete surfacing from an existing roadway could be removed, the existing portland cement concrete pavement broken, removed, crushed to 1-1/2 inch minus, proportioned through a conventional central mix proportioning plant with the addition of concrete sand, and placed with a conventional slipform paver; and to determine if a two course, composite pavement, each course of different mix proportions, could be placed monolithically with conventional slipform equipment after being proportioned and mixed in a conventional central mix plant. The project was completed with no major problem. The objectives were satisfactorily met. The project was a success to the degree that the Iowa D.O.T. is proceeding with at least two projects for the 1977 construction season that will utilize the old pavement as appregate for the new pavement.
Resumo:
This report provides details of IADOT's experience removing and crushing asphaltic concrete and portland cement concrete for recycling. The recycled material was used on interstate highways for the subbase and shoulders. The major problem IADOT encountered on this project was the removal of reinforcing steel from the broken concrete. The contractor used hydraulic powered shears to clip off all protruding steel during the removal and loading of the concrete on the grade. This project took place in 1977.
Resumo:
The Iowa Department of Transportation has been conducting skid resistance tests on the paved secondary system on a routine basis since 1973. This report summarizes the data obtained through 1976 on 10,101 miles in 95 of the 99 counties in Iowa. A summary of the skid resistance on the secondary system is presented by pavement type and age. The data indicates that the overall skid resistance on this road system is excellent. Higher traffic roads (over 1000 vehicles per day) have a lower skid resistance than the average of the secondary roads for the same age and pavement type. The use of non-polishing aggregates in asphaltic concrete paving surface courses and transverse grooving of portland cement concrete paving on high traffic roads is recommended. The routine resurvey of skid resistance on the secondary road system on a 5-year interval is probably not economically justified and could be extended to a 10-year interval.
Resumo:
Des Moines River Plat Maps.
Resumo:
Des Moines River Plat Maps.
Resumo:
Des Moines River Plat Maps.
Resumo:
Des Moines River Plat Maps.
Resumo:
Des Moines River Plat Maps.
Resumo:
Des Moines River Plat Maps.
Resumo:
Des Moines River Plat Maps.
Resumo:
The purpose of this investigation was to determine the comparative effectiveness of standard D-57 concrete and Iowa system Low Slump Dense Concrete in preventing threshold levels of chloride from penetrating the concrete slabs to the reinforcing steel.