11 resultados para 730109 Surgical methods and procedures

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In anticipation of regulation involving numeric turbidity limit at highway construction sites, research was done into the most appropriate, affordable methods for surface water monitoring. Measuring sediment concentration in streams may be conducted a number of ways. As part of a project funded by the Iowa Department of Transportation, several testing methods were explored to determine the most affordable, appropriate methods for data collection both in the field and in the lab. The primary purpose of the research was to determine the exchangeability of the acrylic transparency tube for water clarity analysis as compared to the turbidimeter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this chapter is to implement Iowa Code chapter 316 and sections 6B.42, 6B.45, 6B.54 and 6B.55, as required by the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, Pub. L. 91-646, as amended by the Uniform Relocation Act Amendments of 1987, Title IV, Pub. L. No. 100-17 , Sec. 104, Pub. L. 105-117, and federal regulations adopted pursuant thereto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A program of A (90 day moist room), B (14 day moist room) and C (7 day moist room and 7 day 50%_humidity) type curing for the R-11-Z program of durability of concrete using the automatic freeze and thaw machine (ASTM C-291) has been used in the Materials Department of the Iowa State Highway Commission since December 6, 1966. A summary of the results obtained from then until March 25, 1968, indicates that the B and C type curing are yielding very little valuable information. However, the A cure exhibits a wide range of durability factors and also groups the aggregates in an order which is related to the service record (there are definite exceptions. The biggest disadvantage to the A cure is the length of time that it takes to complete the test (90 day cure and 38 day test). The Kansas Highway Department has experimented with different cements and aggregates in order to determine which combination offers a concrete with the best durability factor possible. In an experimental test section of highway, concrete made with a Type II cement appeared to have better durability than others made with Type I cements. Because of this, a question has been raised at the Iowa State Highway Commission - Can concrete made with Type II cements, because of a lesser amount of tricalcium aluminate, yield better durability than concrete made with Type I cements?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report on a review of the Central Procurement Enterprise (CPE) of the Iowa Department of Administrative Services for the period July 1, 2009 through March 31, 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document is specific to the state of Iowa and outlines the requirements and procedures necessary to use, distribute, and service compressed natural gas (CNG) and the equipment associated with it. Four state agencies’ requirements for CNG are covered in this document: The Iowa Utilities Board (IUB), Iowa Department of Agriculture and Land Stewardship (IDALS)/ Weights and Measures Bureau, Iowa Department of Revenue (IDR) and Iowa Department of Public Safety (IDPS) / Division of the State Fire Marshal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the research completed under the research contract entitled "Development of a Conductometric Test for Frost Resistance of Concrete" undertaken for the Iowa Highway Research Board. The objective of the project was to develop a test method which can be reasonably and rapidly performed in the laboratory and in the field to predict, with a high degree of certainty, the behavior of concrete subjected to the action of alternate freezing and thawing. The significance of the results obtained, and recommendations for use and the continued development of conductometric testing are presented in this final report. In this project the conductometric evaluation of concrete durability was explored with three different test methods. The test methods and procedures for each type of test as well as presentation of the results obtained and their significance are included in the body of the report. The three test methods were: (1) Conductometric evaluation of the resistance of concrete to rapid freezing and thawing, (2) Conductometric evaluation of the resistance of concrete to natural freezing and thawing, and (3) Conductometric evaluation of the pore size distribution of concrete and its correlation to concrete durability. The report also includes recommendations for the continued development of these test methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the analysis of transverse cracking in asphalt pavement by a five state study team from Iowa, Kansas, Nebraska, North Dakota, and Oklahoma. The study was initiated under the sponsorship of the Federal Highway Administration and four evaluation conferences were held during the course of the study. Each state conducted a crack inventory on their asphalt pavement. An effort was made to correlate this inventory with numerous factors that were considered to be pertinent to the cracking problem. One state did indicate that there was a correlation between transverse cracking severity and the subsurface geology. The other states were unable to identify any significant factors as being the primary contributors. The analysis of the problem was divided into, (1) mix design, (2) maintenance, and (3) 3R rehabilitation. Many potential factors to be considered were identified under each of these three study divisions. There were many conclusions as to good and bad practices. One major conclusions was that a more effective crack maintenance program with early sealing was essential. Some new practices were suggested as potentially more cost effective in design, construction and maintenance. The interchange of methods and procedures by individual states yielded benefits in that other states selected practices that would be an improvement to their program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State Highway Departments and local street and road agencies are currently faced with aging highway systems and a need to extend the life of some of the pavements. The agency engineer should have the opportunity to explore the use of multiple surface types in the selection of a preferred rehabilitation strategy. This study was designed to look at the portland cement concrete overlay alternative and especially the design of overlays for existing composite (portland cement and asphaltic cement concrete) pavements. Existing design procedures for portland cement concrete overlays deal primarily with an existing asphaltic concrete pavement with an underlying granular base or stabilized base. This study reviewed those design methods and moved to the development of a design for overlays of composite pavements. It deals directly with existing portland cement concrete pavements that have been overlaid with successive asphaltic concrete overlays and are in need of another overlay due to poor performance of the existing surface. The results of this study provide the engineer with a way to use existing deflection technology coupled with materials testing and a combination of existing overlay design methods to determine the design thickness of the portland cement concrete overlay. The design methodology provides guidance for the engineer, from the evaluation of the existing pavement condition through the construction of the overlay. It also provides a structural analysis of various joint and widening patterns on the performance of such designs. This work provides the engineer with a portland cement concrete overlay solution to composite pavements or conventional asphaltic concrete pavements that are in need of surface rehabilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. As a result, there has been a progressive move among state Departments of Transportation (DOTs) toward an increased use of the LRFD in geotechnical design practices. For the above reasons, the Iowa Highway Research Board (IHRB) sponsored three research projects: TR-573, TR-583 and TR-584. The research information is summarized in the project web site (http://srg.cce.iastate.edu/lrfd/). Two reports of total four volumes have been published. Report volume I by Roling et al. (2010) described the development of a user-friendly and electronic database (PILOT). Report volume II by Ng et al. (2011) summarized the 10 full-scale field tests conducted throughout Iowa and data analyses. This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The following notable benefits to the bridge foundation design were attained in this project: 1) comprehensive design tables and charts were developed to facilitate the implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations; 2) the results showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations; and 3) contribution to the existing knowledge, thereby advancing the foundation design and construction practices in Iowa and the nation.