13 resultados para 41st Regiment of Foot

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contains information of the marches and other activities of the First Regiment of the United States Dragoons between the years 1833 and 1850 with in the boundaries of the Iowa country. Written by Louis Pelzer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. April 22, 2009 THIS WEEK: An excerpt of an article on Major Claude Stanley regarding his times with the Iowa Regiment, 168th Infantry, 42nd (Rainbow) Division during World War I. Stanley was elected to the Iowa Senate in 1932.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are depleting the once seemingly endless supply of aggregate available for concrete paving in Iowa. At the present time, some parts of our state do not have locally available aggregates of acceptable quality for portland cement concrete paving. This necessitates lengthy truck and rail hauls which frequently more than doubles the price of aggregate. In some parts of the state, the only coarse aggregates available locally are "d-cracking" in nature. Iowa's recycling projects were devised to alleviate the shortage of aggregates wherever they were found to have an economic advantage. We completed our first recycling project in 1976 on a 1.4 project in Lyon county. The data collected in this project was used to schedule two additional projects in 1977. The larger of these two projects is located in Page and Taylor county on Highway #2 and is approximately 15 miles in length. This material is to be crushed and re-used in the concrete paving, it is to be reconstructed on approximately the same alignment. The second project is part of the construction of Interstate I-680 north of council Bluffs where an existing 24 foot portland cement concrete roadway is to be recycled and used as the aggregate in the slip form econocrete subbase and the portland cement concrete shoulders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1986, the Iowa DOT installed 700 feet of International Barrier Corporation (IBC) barrier between the 1-235 eastbound off ramp and the adjacent eastbound loop on ramp at 8th Street in West Des Moines. It is a 3 foot 6 inch high sand-filled galvanized sheet metal barrier. The bid price on this project was $130 per lineal foot. It was evaluated annually for four years. During this time, there have been no severe accidents where vehicles hit the barrier. There are scrapes and dents indicating minor accidents. The barrier has performed very well and required no maintenance. Due to its initial cost, the IBC barrier is not as cost-effective as portland cement concrete barrier rails.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plagued for nearly a century by the perennial flooding of Indian Creek, the City begins construction on a massive channelization project designed to confine the creek to its banks. Funded largely through a grant from the recently established Public Works Administration (PWA), the Indian Creek Channel, upon its completion two years later, would become the largest PWA undertaking in the State of Iowa. Though it did not completely end flooding in Council Bluffs, construction of the Indian Creek Channel did substantially reduce both the number and severity of the city's subsequent floods. It also profoundly impacted the residential and commercial development of Council Bluffs, as well as the city's sanitary conditions. The effects of the Indian Creek channelization, both practical and historical, are still realized today. In 2009, plans for a City road and bridge construction project at the intersection of North Broadway Street and Kanesville Boulevard proposed to replace a 221-foot-long segment of the Indian Creek Channel with a concrete box culvert. In compliance with the National Historic Preservation Act, a cultural resources study was conducted at the proposed construction site, the findings of which concluded that the historic character of the Indian Creek Channel would be compromised by the impending construction. As a means of mitigating these damages, an agreement was reached among the City, the Iowa State Historic Preservation Office, and the Federal Highway Administration that resulted in detailed research and documentation of the historical significance of the Indian Creek Channel. The findings of that study are summarized in this publication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ASPHALT STABILIZATION (ASPHADUR): Asphadur (now called 3M Additive 5990) was incorporated into asphaltic concrete on a lane delineation, AC resurfacing, project in Council Bluffs. The experimental feature was included in the eastbound lanes of Interstate 480, beginning at the bridge over the Missouri River and ending at the bridge over North 41st Street. The project was constructed in October 1979. The objective of the project was to investigate the manufacturer's claims of improved strength, stability and durability of an asphalt mix. REDUCTION OF REFLECTION CRACKS (MONSANTO BIDIM SYNTHETIC FABRIC): A lane delineation project was constructed in the eastbound lanes of Interstate 480 in Council Bluffs. A synthetic fabric, Monsanto Bidim C-28, was placed between the portland cement concrete and two inches of Type A asphaltic concrete resurfacing containing Asphadur. The experimental feature began at the bridge over the Missouri River and ended at the bridge over North 41st Street. The project was constructed in October 1979. The objective of this experimental project was to determine the effectiveness of the fabric in reducing reflective cracking in an asphaltic concrete overlay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 40,000 tons of deteriorated asphalt concrete has been removed from Interstate 80 in Cass County and stockpiled. Laboratory tests indicate that this material has considerable value when upgraded with new aggregate and asphalt cement. This report documents the procedures used and results obtained on an experimental recycling project. It was demonstrated that present drum mixing-recycling equipment and procedures can be used to utilize this material with satisfactory results. Laboratory analyses of material components and mixtures were performed; these analyses indicate mixture can be produced that is uniform, stable, and very closely resembles mixture produced with all virgin material. A 1700 foot long test section was constructed on US 169 in Kossuth County wherein salvaged asphalt concrete from I-80 in Cass County was utilized. The salvaged mix was blended with virgin aggregate and recycled through a modified drum mixing plant, the reprocessed mixture was satisfactorily placed 1 1/2 inches thick as a resurfacing course on an old PCC pavement. An inspection of the test section was made in December of 1978 to evaluate the performance after one full year of service. There was no evidence of rutting or shoving from traffic. The surface does, however, have a very dry and somewhat ravelled appearance. This can be related to a low asphalt content in the mix and some temperature control problems which were difficult to get fully corrected on such a short project and with a short supply of readily available materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Natural Resources (IDNR) requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate the health impacts of exposure to soil contaminated with heavy metals at a commercial property located in Cedar Rapids, Iowa. The specific request was to evaluate the health impacts from exposure to contaminants that were above IDNR statewide standards. This health consultation addresses potential health risks to people from exposure to the soil within the property. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Velocity-density tests conducted in the laboratory involved small 4-inch diameter by 4.58-inch-long compacted soil cylinders made up of 3 differing soil types and for varying degrees of density and moisture content, the latter being varied well beyond optimum moisture values. Seventeen specimens were tested, 9 with velocity determinations made along two elements of the cylinder, 180 degrees apart, and 8 along three elements, 120 degrees apart. Seismic energy was developed by blows of a small tack hammer on a 5/8-inch diameter steel ball placed at the center of the top of the cylinder, with the detector placed successively at four points spaced 1/2-inch apart on the side of the specimen involving wave travel paths varying from 3.36 inches to 4.66 inches in length. Time intervals were measured using a model 217 micro-seismic timer in both laboratory and field measurements. Forty blows of the hammer were required for each velocity determination, which amounted to 80 blows on 9 laboratory specimens and 120 blows on the remaining 8 cylinders. Thirty-five field tests were made over the three selected soil types, all fine-grained, using a 2-foot seismic line with hammer-impact points at 6-inch intervals. The small tack hammer and 5/8-inch steel ball was, again, used to develop seismic wave energy. Generally, the densities obtained from the velocity measurements were lower than those measured in the conventional field testing. Conclusions were reached that: (1) the method does not appear to be usable for measurement of density of essentially fine-grained soils when the moisture content greatly exceeds the optimum for compaction, and (2) due to a gradual reduction in velocity upon aging, apparently because of gradual absorption of pore water into the expandable interlayer region of the clay, the seismic test should be conducted immediately after soil compaction to obtain a meaningful velocity value.