5 resultados para 3D multi-user virtual environments

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Each winter, the Iowa Department of Transportation (Iowa DOT) maintenance operators are primarily responsible for plowing snow off federal and state roads. Drivers typically work long shifts under treacherous conditions. In addition to properly navigating the vehicle, drivers are required to operate several plowing mechanisms simultaneously, such as plow controls and salt sprayers. However, operators have few opportunities during the year to practice and refine their skills. An ideal training program would provide operators with the opportunity to practice these skills under realistic yet safe conditions, as well as provide basic training to novice or less-experienced operators. Recent technological advancements have made driving simulators a desirable training and research tool. This literature review discusses much of the recent research establishing simulator fidelity and espousing its applicability. Additionally, this report provides a summary of behavioral and eye tracking research involving driving simulators. Other research topics include comparisons between novice and expert drivers’ behavioral patterns, methods for avoiding cybersickness in virtual environments, and a synopsis of current personality measures with respect to job performance and driving performance. This literature review coincides with a study designed to examine the effectiveness of virtual reality snowplow simulator training for current maintenance operators, using the TranSim VS III truck and snowplow simulator recently purchased by the Iowa DOT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive measurement for the Iowa DOT and contractors. The thickness incentive can be as much as 3% of the concrete contact unit price and the disincentive can be as severe as remove and replace. This study evaluated the potential of the MIT device for PCC pavement thickness quality assurance. The limited testing indicates the unit is sufficiently repeatable and accurate enough to replace core drilling as the thickness measurement method. Further study is needed to statistically establish the single user and multi-user/device precision as well as establish an appropriate sampling protocol and PWL specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, interactive, full-scale, three-dimensional (3D) models of highway infrastructure. For this project, the highway infrastructure element chosen was a two-way, stop-controlled intersection (TWSCI). VirtuTrace, a virtual reality simulation engine developed by the principal investigator, was used to construct the dynamic 3D model of the TWSCI. The model was implemented in C6, which is Iowa State University’s Cave Automatic Virtual Environment (CAVE). Representatives from the Institute of Transportation at Iowa State University, as well as representatives from the Iowa Department of Transportation, experienced the simulated TWSCI. The two teams identified verbally the significant potential that the approach introduces for the application of next-generation simulated environments to road design and safety evaluation.