4 resultados para 371.30281 B595d
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Newsletter for Iowa Lottery
Resumo:
Strong winds, ice, snow and tornadoes are natural occurrences in Iowa forests. When severe, storms can cause extensive damage to forests by uprooting, wounding, bending and breaking trees. Storm damage management should involve a quick assessment to determine the extent of the damage, the need and potential for salvage, and woodland management efforts to return the woodland to a productive status.
Resumo:
The evaluation’s overarching question was “Did the activities undertaken through the state’s LSTA plan achieve results related to priorities identified in the Act?” The evaluation was conducted and is organized according to the six LSTA priorities. The research design employed two major methodologies: 1. Data sources from Iowa Library Services / State Library of Iowa2 as well as U.S and state sources were indentified for quantitative analysis. These sources, which primarily reflect outputs for various projects, included: Statistics from the Public Library Annual Survey Statistics collected internally by Iowa Library Services such as number of libraries subscribing to sponsored databases, number of database searches, attendance at continuing education events, number of interlibrary loan transactions Evaluation surveys from library training sessions, professional development workshops and other programs supported by LSTA funds Internal databases maintained by Iowa Library Services Impact results from post training evaluations conducted by Iowa Library Services 2010 Iowa census data from the U.S. Census Bureau LSTA State Program Reports for the grant period 2. Following the quantitative analysis, the evaluator gathered qualitative data through interviews with key employees, a telephone focus group with district library consultants and two surveys: LSTA Evaluation Survey (Public Libraries) and LSTA Evaluation Survey (Academic Libraries). Both surveys provided sound samples with 43 representatives of Iowa’s 77 academic libraries and 371 representatives of Iowa’s 544 public libraries participating. Respondents represented libraries of all sizes and geographical areas. Both surveys included multiple choice and rating scale items as well as open-ended questions from which results were coded to identify trends, issues and recommendations.
Resumo:
Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.