8 resultados para 13200-007
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Brief Project Summary (no greater than this space allows): This project is located in the Ludlow Creek Watershed, a 9,827 acre sub-watershed of the Yellow River. Ludlow Creek is extremely fragile and unique because it is a karst watershed, containing an estimated 1,188 sinkholes and depressions. Ludlow Creek may arguably contain more sinkholes per acre than any other watershed in Iowa. Water sampling data shows sediment delivery and E.coli as being water quality impairments in Ludlow Creek. The goals of this project are to 1) Reduce sediment delivery by 40%, 2) Reduce animal waste run-off which may include E.coli and nutrients by 40%, and 3) Reduce the water quality impact that sinkholes have on this watershed. The following Best Management Practices (BMPs) will be implemented to target Ludlow Creek's water quality impairments: no-till, terraces, grade stabilization structures, manure systems, strearnbank stabilization, pasture management, and both sinkhole and stream buffers. Our goal is to implement a combination of approximately 62 BMPs in the Ludlow Creek Watershed. These landowners will receive 75% cost-share for each one of these practices. If we receive funding from this grant, we will reach this 75% cost-share allocation by leveraging WHIP or EQIP funds when available, for most of these practices. This application has been reviewed and approved by the Allamakee County Soil and Water Conservation District Commissioners.
Resumo:
The Yellow River Headwaters Watershed (YRHW) drains 26,730 acres of rural land within Winneshiek and Allamakee Counties. While portions of the river have been designated as a High Quality Resource by the State of Iowa, other portions appear on the State's 303(d) List of Impaired Waters due to excessive nutrients, sediment and other water quality issues. The Winneshiek SWCD was fortunate enough to secure WSPF/WPF funds for FY2009 to begin addressing many of the sources of the identified problems, especially along the all-to-critical stream corridor. Initial landowner I producer interest has exceeded expectations and several key BMPs have been installed within the identified critical areas. Yet due to the current budget constraints in the WSPF/WPF programs, we currently have greater landowner I producer interest than we do funds, which is why the District is applying for WIRB funding, to provide supplemental incentives to continue the installation of needed Grade Stabilization Structures, Terraces and Manure Management Systems in identified critical areas. Other funding, currently available to the District, will cover the remaining portions of the project's budget, including staff and our outreach efforts.
Resumo:
The Hurley Creek Watershed is a micro-watershed of approximately 2,211 acres (3.5 square miles), which drains into the Platte River southwest of Creston. The watershed is 64% urban and 36% rural. The urban area includes the bulk of the town of Creston (population 7,597) and the rural area is just north of Creston, which includes the origin of Hurley Creek. Hurley Creek Watershed was examined for improvements following a citizens group in 2004 determined a need and desire to make McKinley Lake, a 65-acre city-owned lake, a quality fishery and viable swimming lake, as it once was. As part of a major park improvement project over ten-plus years, the watershed improvement project is undertaken to reduce pollution entering the lake. In 2006, IOWATER volunteers, under guidance of the town’s consultants, sampled the stream in 8 locations throughout the year, a total of 92 samples. The samples, along with visual inspections of the creek, found three major impairments: 1) high E. Coli levels, 2) severe erosion, and 3) storm water management. Using the Watershed Project Planning Protocol, the consultant and a volunteer committee of interested citizens determined that five physical and three administrative actions should be undertaken. The request will help: identify sources of E. Coli and reduce its delivery into the watershed, control animal access, manage storm water, implement stream-bank stabilization, educate the public, and develop miscellaneous small projects on specific properties.
Resumo:
Lake Hendricks is a 54 acre man-made lake that is encompassed by a 1,209 acre watershed. Lake Hendricks is currently on the 303(d) Impaired Waters List for algae and pH impairments due to an abundance of algae growth caused by nutrients being delivered to the lake via 11 separate tile lines draining adjoining cropland areas. In 2009, a Watershed Management Plan was developed in partnership with IDALS and the IDNR 319 programs and $256,500 was awarded to address the nutrient and sediment loading of the lake. Over the past three years a total of $251,000 were spent to implement one grade stabilization structure, two sediment basins, two bioreactors, 700 feet of streambank stabilization, 30.7 acres oftimber stand improvement, and 39.4 acres of Conservation Reserve Program (CRP). A proposed wetland structure and three sediment basins are scheduled to be constructed in the fall of 2011. Current water monitoring data is showing an average of 54% Nitrate (N) loading reductions as a result of the installed BMPs. The District feels further reductions are possible by addressing nutrient management issues in the cropland areas, stabilizing additional streambanks, and improving the surrounding woodland areas. The goal is to reduce N loading by an additional 20% and sediment loading by 50 tlac/yr. The resulting collaborative effort may lead to the future de-listing of Lake Hendricks from the 303(d) Impaired Waters List.
Resumo:
Lower Coldwater and Palmer Creeks in Butler and Floyd counties are subwatersheds of the Cedar River, which provides drinking water to Cedar Rapids, IA. The increasing concentration of nitrate+nitrate in the river is of concern to the Cedar Rapids water utility, and IDNR snapshot monitoring shows Coldwater and Palmer to be significant potential sources (above the 90th percentile for subwatersheds monitored). Both creeks are also on the Iowa Section 303(d) list of impaired waters (aquatic life). Citizens of these predominantly agricultural watersheds organized the Coldwater-Palmer Watershed Improvement Association to deal proactively with nonpoint source pollutants from crop and livestock operations through a performance-based environmental management program. The locally-adapted program implemented by the Coldwater-Palmer watershed council rewards participants for environmental accomplishments - soil quality improvement and nutrient source reduction as measured by accepted, scientifically-based tests and models. Most of the locallyappropriate BMPs used to improve performance are undertaken voluntarily at participants' initiative. WIRB funds will be combined with funding from the Iowa Com Growers Association and significant in-kind support from the Cedar River Watershed Monitoring Coalition, Iowa State University Extension and other partners. The project will result in sustainable reduction in nutrient loading achieved with voluntary participation of a majority of watershed farm operators.
Resumo:
The enclosed project request for funding will address needed conservation work within the Storm Lake Watershed. The proposed conservation practices and activities have been planned for several years but due to funding limitations have not been completed. These innovative practices will address some of the remaining and hard to address problem areas of sediment and nutrient loading within the watershed. The four goals of this project are: installation of four in-stream Boulder Weirs, planting of native grasses around ten surface intakes, completion of three urban rain gardens and hiring of a part-time Iowater monitoring coordinator. Through the new Awaysis destination park project Storm Lake is truly placing a high value on our watershed and lake as a major asset to the area. Awaysis is a $30 million project that's success will hinge on maintaining the highest standards in regard to the water quality of the lake and its watershed.
Lake LaVerne Watershed Project Progress Report: Project Number 1415-007, Final Report, June 30, 2016
Resumo:
This application targets a critical need for low maintenance and inexpensive treatment solutions to encourage landowners and resource managers to enhance the water quality of small ponds and lakes. Many rural and urban small ponds and lakes across Iowa and the region have eutrophic conditions with high levels of nutrients and low levels of oxygen. Story SWCD teamed with Iowa State University (ISU) researchers propose to address this need through the construction and monitoring of a vegetated floating island (VFI) system on ISU's iconic Lake LaVerne. VFI's are hydroponically-vegetated islands that reduce nutrient loading directly from pond and lake water (rather than from soil adjacent to the pond). Urban watershed assessment on the ISU campus has already led to reductions in stormwater runoff to the lake but eutrophic conditions persist and are well documented. The VFI will function as a public art attraction for the entire 2015 growing season during which time monitoring will occur to quantify nitrogen, phosphorus and carbon changes in the lake. Tens of thousands of visitors to the ISU campus and Lake LaVerne will interact with this installation using promotional signage on site, public events and interactive social media throughout the project. Water quality and vegetation analysis will quantify nutrient uptake by the island vegetation and thus determine its effectiveness for use in other similar water bodies in Iowa.
Resumo:
In addition to their original sentence, persons convicted of sexual abuse, incest or sexual exploitation of a minor also receive a “special sentence” of ten years, or in some cases, life. In its prison population forecast, the Iowa Division of Criminal and Juvenile Justice Planning noted “an unexpectedly high rate of revocation among those released to the special sentence, particularly given past research that has shown Iowa sex offenders having very low rates of re-arrest and/or return to prison.”