4 resultados para 107-650

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bureau of Nutrition and Health Promotion part of the Iowa Department of Public Health produces of weekly newsletter about the Iowa WIC Program for the State of Iowa citizen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project 540-S of the Iowa Engineering Experiment Station (Project HR-107, Iowa Highway Research Board) was started in June, 1964. During the year ten 2-gallon samples of asphalt cement and ten 100-lb samples of asphaltic concrete were studied by the personnel of the Bituminous Research Laboratory, Iowa State University. The samples were from tanks and mixers of asphalt plants at various Iowa State Highway Commission paving jobs. The laboratory's research was in two phases: 1. To ascertain if properties of asphalt cement changed during mixing operations. 2. To determine whether one or more of the several tests of asphalt cements were enough to indicate behavior of the heated asphalt cements. If the reliability of one or more tests could be proved, the behavior of asphalts would be more simply and rapidly predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When mixing asphalt in thin film and at high temperatures, as in the production of asphalt concrete, it has been shown that asphalt will harden due essentially to two factors: (1) losses of volatiles and (2) oxidation. The degree of hardening as expressed by percent loss in penetration varied from as low as 7% to about 57% depending on mixing temperatures, aggregate types, gradation, asphalt content, penetration and other characteristics of asphalts used. Methods used to predict hardening during mixing include loss on heat and thin film oven tests, with the latter showing better correlation with the field findings. However, information on other physical and chemical changes that may occur as a result of mixing in the production of hot-mix asphaltic concrete is limited, The purpose of this research project was to ascertain the changes of asphalt cement properties, both physical and chemical, during mixing operation and to determine whether one or more of the several tests of asphalt cements were critical enough to indicate these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, similar to conventional asphalt, except at low temperatures. Phase II of this project addresses this shortcoming and evaluates the Superpave performance of laboratory mixes produced with the enhanced bio-binders. The main objective of this research was to develop a bio-binder capable of replacing conventional asphalt in flexible pavements by incorporating ground tire rubber (GTR) into bio-oil derived from fast pyrolysis of agriculture and forestry residues. The chemical compatibility of the new bio-binder with GTR was assessed, and the low-temperature performance of the bio-binders was enhanced by the use of GTR. The newly developed binder, which consisted of 80 percent conventional binder and 20 percent rubber-modified bio-oil (85 percent bio-oil with 15 percent GTR), was used to produce mixes at two different air void contents, 4 and 7 percent. The laboratory performance test results showed that the performance of the newly developed bio-binder mixes is as good as or better than conventional asphalt mixes for fatigue cracking, rutting resistance, moisture sensitivity, and low-temperature cracking. These results need to be validated in field projects in order to demonstrate adequate performance for this innovative and sustainable technology for flexible pavements.