22 resultados para 10030440 CTD-013
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Sioux County Bridge (FHWA #308730), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Ida County Bridge (FHWA #186070) and the Johnson County Bridge (FHWA #205750). A tech brief provides overall information about the project.
Resumo:
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Ida County Bridge (FHWA #186070), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Johnson County Bridge (FHWA #205750). A tech brief provides overall information about the project.
Resumo:
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Johnson County Bridge (FHWA #205750), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Ida County Bridge (FHWA #186070). A tech brief provides overall information about the project.
Resumo:
This project demonstrated the capabilities for load testing bridges in Iowa, developed and presented a webinar to local and state engineers, and produced a spreadsheet and benefit evaluation matrix that others can use to preliminarily assess where bridge testing may be economically feasible given truck traffic and detour lengths.
Resumo:
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. The three final reports document one each of three bridges inspected, load tested, and load rated as part of the project. The bridges include the Sioux County Bridge (FHWA #308730), the Ida County Bridge (FHWA #186070), and the Johnson County Bridge (FHWA #205750). Actions included testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. A Tech Transfer Summary provides overall information about the project.
Resumo:
Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.
Resumo:
The DMACC Lake Watershed Improvement project will focus on water quality and quantity as well as channel and lake restoration. Roadway, parking lot, and roof drainage from the west and northwest portions of the campus add significant amounts of pollutants and silt to the lake. Severe channel erosion exists along the northern creek channel with exposed cut banks ranging from 2-10 feet in height devoid of vegetation. Heavy lake sedimentation and algae blooms are a result of accumulated sediment being conveyed to the lake. Most sections of the north channel have grades of between 0.5% and 1%. This channel receives large scouring flow velocities. There are no natural riffle or pool systems. There are five areas where these riffle and pool systems may need to be created in order to slow overall channel velocities. This will create a series of rock riffles and a still pool that will mimic the conditions that natural channels tend to create, protecting the channel from undercutting. Multiple practices will need to be implemented to address the pollutant, silt, and channel erosion. Improvements will be specifically tailored to address problems observed within the north channel, on-site drainage from the west and northwest, as well as off-site drainage to the north of the campus and east of Ankeny Blvd (Hwy 69). The result will be improved quality and quantity of site drainage and a channel with a more natural appearance and reduced scour velocities. Sections of the north channel will require grading to establish slopes that can support deep rooted vegetation and to improve maintenance access. Areas with eroded banks will require slope pull back and may also require toe armor protection to stabilize. A constructed wetland will collect and treat runoff from the west on site parking lot, before being discharged into the lake. This project will create educational opportunities to both students and the general public as well as interested parties outside of the local area for how an existing system can be retro fitted for improved watershed quality.
Resumo:
This project investigated regulatory issues that may affect or limit freight movement in Iowa and other Midwest states: Illinois, Kansas, Minnesota, Missouri, Nebraska, South Dakota, and Wisconsin. Current state regulations for the following are reviewed and summarized: - Vehicle dimensions - Vehicle weights - Speed limits - Weight compliance enforcement - Fees and taxes - Driver qualifications - Medical certification - Hours of service - Oversize-overweight permits
Resumo:
The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.
Resumo:
Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemicals and other corrosives applied to bridge decks from penetrating and damaging substructure components of the bridge. Expansion joints are often one of the first components of a bridge deck to fail and repairing or replacing expansion joints are essential to extending the life of any bridge. In the Phase I study, the research team focused on the current means and methods of repairing and replacing bridge deck expansion joints. Research team members visited with Iowa Department of Transportation (DOT) Bridge Crew Leaders to document methods of maintaining and repairing bridge deck expansion joints. Active joint replacement projects around Iowa were observed to document the means of replacing expansion joints that were beyond repair, as well as, to identify bottlenecks in the construction process that could be modified to decrease the length of expansion joint replacement projects. After maintenance and replacement strategies had been identified, a workshop was held at the Iowa State Institute for Transportation to develop ideas to better maintain and replace expansion joints. Maintenance strategies were included in the discussion as a way to extend the useful life of a joint, thus decreasing the number of joints replaced in a year and reducing the traffic disruptions.
Resumo:
Information about roadway departures, rural intersections, and rural speed management countermeasures relevant to Iowa was summarized on webpages (www.ctre.iastate.edu/research-synthesis/) to allow agencies to more effectively target specific types of crashes in Iowa. More information about each of the countermeasures described in this tech transfer summary, as well as speed impacts, reported crash modification factors, costs, usage within Iowa, and Iowa-specific guidance, is available on the Synthesis of Safety-Related Research web pages at www.ctre.iastate.edu/research-synthesis/. The project provides Iowa agencies with a resource (both web pages and relevant publications) to address rural safety. The team is coordinating with the Iowa Local Technical Assistance Program (LTAP), the Iowa Highway Research Board, the Iowa Association of Counties, and other groups to explore additional ways to distribute the information to local and county agencies.
Resumo:
The objective of this project has been to identify best practices and approaches to Municipal Separate Storm Sewer System (MS4) program planning for the Iowa Department of Transportation. Information is primarily based on existing state MS4 programs as examples and references for use as an agency-based MS4 program is developed.
Resumo:
For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes. Throughout this development, much has been learned and has resulted in Iowa being viewed as a national leader in the area of ABC. However, at this time, the Office of Bridges and Structures does not have a complete set of working standards nor design examples to accompany ABC portions of the bridge design manual (now called the Load and Resistance Factor Design/LRFD Bridge Design Manual). During the fall of 2013, the Iowa DOT constructed a bridge on IA 92 in Cass County using an ABC technique known as slide-in bridge construction. During the design of the Cass County Bridge, several questions were raised about the performance of critical design and construction details: the pile-to-pile cap connection and the polytetrafluoroethylene (PTFE) coated bearing pads on which the bridge would slide. The timing of this specific need and the initiation of this project offered a unique opportunity to provide significant short- and long-term value to the Office of Bridges and Structures. Several full-scale laboratory tests, which included several variations of the pile-to-pile cap connection and bearing pad slides, were completed. These tests proved that the connection was capable of achieving the desired capacity and that the expected coefficient of friction of the bearing pads was reasonably low. Finally, a design tool was developed for the Office of Bridges and Structures to be used on future projects that might benefit from a precast pile cap.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC example that utilized connection details that had been utilized elsewhere. The connection details used between the drilled shaft and pier column and between the pier column and the pier cap were details needing evaluation. These connection details utilized grouted couplers that have been tested by others with mixed results—some indicating quality performance and others indicating questionable performance. There was a need to test these couplers to gain an understanding of their performance in likely Iowa details and to understand how their performance might be impacted by different construction processes. The objective of the work was to perform laboratory testing and evaluation of the grouted coupler connection details utilized on precast concrete elements for the Keg Creek Bridge. The Bridge Engineering Center (BEC), with the assistance of the Iowa Department of Transportation (DOT) Office of Bridges and Structures, developed specimens representative of the Keg Creek Bridge connections for testing under static and fatigue loads in the structures laboratory. The specimens were also evaluated for their ability to resist the intrusion of water and chlorides. Evaluation of their performance was made through comparisons with design assumptions and previous research, as well as the physical performance of the coupled connections.