168 resultados para Aggregate Peeling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With ever tightening budgets and limitations of demolition equipment, states are looking for cost-effective, reliable, and sustainable methods for removing concrete decks from bridges. The goal of this research was to explore such methods. The research team conducted qualitative studies through a literature review, interviews, surveys, and workshops and performed small-scale trials and push-out tests (shear strength evaluations). Interviews with bridge owners and contractors indicated that concrete deck replacement was more economical than replacing an entire superstructure under the assumption that the salvaged superstructure has adequate remaining service life and capacity. Surveys and workshops provided insight into advantages and disadvantages of deck removal methods, information that was used to guide testing. Small-scale trials explored three promising deck removal methods: hydrodemolition, chemical splitting, and peeling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 1963 the Materials Department noted the three to four ·year old concrete pavement on I-80 in Cass County was showing extensive surface cracking adjacent to joints and cracks. An examination of the pavement and a few cores from the cracked areas was made by the I.S.H.C. Materials Department and later by David Stark of the P.C.A. Additional surveys were conducted on other concrete pavement made with coarse aggregate from similar rock from two different sources. Blue-line cracking was found on some primary pavement and the indications of incipient cracks were seen on I-29 in Pottawattamie County, north of Council Bluffs. A good "D"-crack pattern is now evident. Surveys were then made of the entire Interstate concrete pavement. No other sections of Interstate were "D"-cracking, although some sections showed joint discoloration. None of these pavements, including the discolored sections, contained "D"-crack associated aggregates. At the same time as the Interstate survey additional pavements and sources were checked. Some "D"-cracking was noticed on certain sections of primary pavement 5-10 years old, in the vicinity of Waterloo and Cedar Rapids. The "D"-cracked pavement was from three aggregate sources, the Newton, Otis, and Burton Ave. quarries. Other pavements in this area that were older or from· different· coarse aggregate sources were not "D"-cracked. We believe that all the "D"-cracking is related, although dedolomitization is probably involved in the intermediate dolomite rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixture proportioning is routinely a matter of using a recipe based on a previously produced concrete, rather than adjusting the proportions based on the needs of the mixture and the locally available materials. As budgets grow tighter and increasing attention is being paid to sustainability metrics, greater attention is beginning to be focused on making mixtures that are more efficient in their usage of materials yet do not compromise engineering performance. Therefore, a performance-based mixture proportioning method is needed to provide the desired concrete properties for a given project specification. The proposed method should be user friendly, easy to apply in practice, and flexible in terms of allowing a wide range of material selection. The objective of this study is to further develop an innovative performance-based mixture proportioning method by analyzing the relationships between the selected mix characteristics and their corresponding effects on tested properties. The proposed method will provide step-by-step instructions to guide the selection of required aggregate and paste systems based on the performance requirements. Although the provided guidance in this report is primarily for concrete pavements, the same approach can be applied to other concrete applications as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). The recently completed Iowa Highway Research Board (IHRB) project TR-643 provided extensive insights into Iowa subsurface drainage practices and pavement subdrain outlet performance. However, the project TR-643 (Phase I) forensic testing and evaluation were carried out in a drought year and during the fall season in 2012. Based on the findings of IHRB Project TR-643, the Iowa DOT requested an expanded Phase II study to address several additional research needs: evaluate the seasonal variation effects (dry fall 2012 versus wet spring/summer 2013, etc.) on subdrain outlet condition and performance; investigate the characteristics of tufa formation in Iowa subdrain outlets; investigate the condition of composite pavement subdrain outlets; examine the effect of resurfacing/widening/rehabilitation on subdrain outlets (e.g., the effects of patching on subdrain outlet performance); and identify a suitable drain outlet protection mechanism (like a headwall) and design for Iowa subdrain outlets based on a review of practices adopted by nearby states. A detailed forensic test plan was developed and executed for inspecting the Iowa pavement subdrains in pursuit of fulfilling the Phase II study objectives. The observed outlets with blockage and the associated surface distresses in newly constructed jointed plain concrete pavements (JPCPs) were slightly higher during summer 2013 compared to fall 2012. However, these differences are not significant. Less tufa formation due to the recycled portland cement concrete (RPCC) base was observed with (a) the use of plastic outlet pipe without the gate screen–type rodent guard and (b) the use of blended RPCC and virgin aggregate materials. In hot-mix asphalt (HMA) over JPCP, moisture-related distress types (e.g., reflection cracking) were observed more near blocked drainage outlet locations than near “no blockage” outlet locations. This finding indicates that compromised drainage outlet performance could accelerate the development of moisture-related distresses in Iowa composite pavement systems. ****** Note: This report follows on work report in "Evaluating Roadway Subsurface Drainage Practices, 2013" http://publications.iowa.gov/14902/ Note: This record contains links to the 210 page full report as well as the 3 page tech transfer summary. The summary is NOT deposited separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If adequately designed and high quality material and good construction practices are used, portland cement concrete is very durable. This is demonstrated by the oldest pavement in Iowa (second oldest in the U.S.) paved in 1904, which performed well for 70 years without resurfacing. The design thickness is an important factor in both the performance and cost of pavement. The objective of this paper is to provide a 30-year performance evaluation of a pavement constructed to determine the required design thickness for low volume secondary roadways. In 1951 Greene County and the Iowa Highway Research Board of the Iowa Department of Transportation initiated a four-mile (6.4 km) demonstration project to evaluate thicknesses ranging from 4-1/2" (11.4 cm) to 6" (15.2 cm). The project, consisting of 10 research sections, was formed pavement placed on a gravel roadbed with very little preparation except for redistribution of the loose aggregate. Eight sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29' 7" (9.02 m) intervals were used in two 4-1/2" (11.4 cm) thick sections. The only air entrained section was non-reinforced. The pavement performed well over its 30-year life carrying a light volume of traffic and did not require major maintenance. There was substantial cracking with average slab length varying directly with thickness. The 4-1/2" (11.4 cm) thick non-air entrained, mesh-reinforced pavement with contraction joints has performed the best.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discussion presented below concerns the section on "Unidentified Cement-Aggregate Reactions" in which mention is made of concrete deterioration related to argillaceous dolomitic limestone aggregates. A considerable amount of research has been conducted on carbonate aggregate-cement reactions as part of the general study on the suitability of carbonate rocks as concrete aggregate which inadvertently did not reach the authors in time to be incorporated in their paper. These reactions which occur in response to the alkaline environment of concrete are not typical alkali-aggregate reactions associated with siliceous aggregates such as opaline cherts, volcanic glasses and etc. The reactions are associated with certain carbonate aggregates whose service records indicate deleterious performance in concrete has occurred. It is my purpose to review briefly carbonate aggregate research conducted at Iowa State University and present some new data on the problem of carbonate aggregate-cement paste reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (ASR). The available alkali test, which is commonly used to measure fly ash alkali, takes approximately 35 days for execution and reporting. Hence, in many instances the fly ash has already been incorporated into concrete before the test results are available. This complicates the job of the fly ash marketing agencies and it leads to disputes with fly ash users who often are concerned with accepting projects that contain materials that fail to meet specification limits. The research project consisted of a lab study and a field study. The lab study focused on the available alkali test and how fly ash alkali content impacts common performance tests (mortar-bar expansion tests). Twenty-one fly ash samples were evaluated during the testing. The field study focused on the inspection and testing of selected, well documented pavement sites that contained moderately reactive fine aggregate and high-alkali fly ash. A total of nine pavement sites were evaluated. Two of the sites were control sites that did not contain fly ash. The results of the lab study indicated that the available alkali test is prone to experimental errors that cause poor agreement between testing labs. A strong (linear) relationship was observed between available alkali content and total alkali content of Class C fly ash. This relationship can be used to provide a quicker, more precise method of estimating the available alkali content. The results of the field study failed to link the use of high-alkali fly ash with the occurrence of ASR in the various concrete sites. Petrographic examination of the pavement cores indicated that Wayland sand is an ASR-sensitive aggregate. This was in good agreement with Iowa DOT field service records. It was recommended that preventative measures should be used when this source of sand is used in concrete mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HR-116 is concerned with the relationship of carbonate aggregate to aging of highway concrete. The ultimate purpose of the research is to provide the Materials Department with better criteria for selection of carbonate aggregates for use in highway concrete. The research stems from the problem in Iowa which relates durability of highway concrete to use of certain aggregates. Service records of certain highways have shown that concrete deterioration is related to the source of coarse carbonate aggregate. Research on this problem in projects HR-15 and HR-86 helped define three broad areas of the problem in more detail: 1. The problem of evaluation of rocks which pass current specifications but have poor service records 2. The basic problem of how rocks contribute to distress in concrete 3. The problem of how concrete ages or weathers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper-combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100(d/D)^n is not justified. It is recommended that the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100 (d/D)n is not justified. It is recommended that. the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most serious impediments to the continued successful use of hot mix asphalt (HMA) pavements is rutting. The Iowa Department of Transportation has required 85% crushed particles and 75 blow Marshall mix design in an effort to prevent rutting on interstate roadways. The objective of this research and report is to develop relation~hips between the percent of crushed particles and resistance to rutting in pavement through the use of various laboratory test procedures. HMA mixtures were made with 0, 30, 60, 85 and 100% crushed gravel, crushed limestone and crushed quartzite combined with uncrushed sand and gravel. These aggregate combinations were used with 4, 5 and 6% asphalt cement (ac). Laboratory testing included Marshall stability, resilient modulus, indirect tensile and creep. A creep resistance factor (CRF) was developed to provide a single numeric value for creep test results. The CRF values relate well to the amount of crushed particles and the perceived resistance to rutting. The indirect tensile test is highly dependent on the ac with a small effect from the percent of crushed particles. The Marshall stability from 75 blow compaction relates well to the percent of crushed particles. The resilient modulus in some cases is highly affected by grade of ac.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this work was to evaluate the potential of image analysis for characterizing air voids in Portland cement Concrete (PCC), voids and constituents of Asphalt Concrete (AC) and aggregate gradation in AC. Images for analysis were obtained from a scanning electron microscope (SEM). Sample preparation techniques are presented that enhance signal differences so that backscattered electron (BSE) imaging, which is sensitive to atomic number changes, can be effectively employed. Work with PCC and AC pavement core samples has shown that the low vacuum scanning electron microscope (LVSEM) is better suited towards rapid analyses. The conventional high vacuum SEM can also be used for AC and PCC analyses but some distortion within the sample matrix will occur. Images with improved resolution can be obtained from scanning electron microscope (SEM) backscatter electron (BSE) micrographs. In a BSE image, voids filled with barium sulfate/resin yield excellent contrast in both PCC and AC. There is a good correlation between percent of air by image analysis and linear traverse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the main report concerning the role that magnesium may have in highway concrete aggregate, over 20,000 electron microprobe data were obtained, primarily from automated scans, or traverses, across dolomite aggregate grains and the adjacent cement paste. Representative traverses were shown in figures and averages of the data were presented in Table II. In this Appendix, detailed representative and selected analyses of carbonate aggregate only are presented. These analyses were not presented in the main report because they would be interesting to only a few specialists in dolomite· rocks. In this Appendix, individual point analyses of mineral compositions in the paste have been omitted along with dolomite compositions at grain boundaries and cracks. Clay minerals and quartz inclusions in the aggregate are also not included. In the analyses, the first three column headings from left to right show line number, x-axis, and y-axis (Line number is an artifact of the computer print-out for each new traverse. Consecutive line numbers indicate a continuous traverse with distances between each point of 1.5 to a few μ-m. X-axis and y-axis are coordinates on the electron microscope stage). The next columns present weight percent oxide content of FeO, K20, CaO, Si02, Al203, MgO, SrO, BaO, MnO, Na20, and C02 (calculated assuming the number of moles of C02 is equal to the sum of moles of oxides, chiefly CaO and MgO), TOTAL (the sum of all oxides), and total (sum of all oxides excluding COi). In many of the analyses total is omitted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety is an important aspect of highway design. Texture and frictional properties are important characteristics in providing safe roadways. Longevity of desirable frictional properties is highly dependent on the aggregate within asphalt pavement. Iowa unfortunately has areas of the State where the locally available aggregate will not give long lasting desirable frictional properties. Iowa has utilized sprinkle treatments to improve the safety of many new asphalt concrete pavements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foamed asphalt shoulders were placed on an Industrial Connector road at the south edge of Muscatine. The foamed asphalt was produced by injecting 1 to 2 percent water into hot asphalt cement in a patented foaming chamber. A foam develops which is 10 to 15 times the original volume. of the asphalt cement. A 3/8" limestone aggregate was used in the foamed asphalt mixture. This foamed asphalt was placed on the shoulders and in the radii on the Industrial Connector road in May 1987. The radii were later replaced due to reconstruction, but the shoulders remain and performed fairly well with some recent stripping and potholing. The performance appeared to be lower than expected from conventional hot mix on projects with similar traffic.